[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2022, Vol. 59 Issue (4) :100-107    DOI:
绿色智能建造 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
排水孔结晶淤堵图像的语义分割识别技术及APP研究
 
(1.中交广连高速公路投资发展有限公司,清远 511500;2.中交四航工程研究院有限公司,广州 510220;3.广东工业大学土木与交通工程学院,广州 510006)
Research on the Recognition Technology and APP for Sematic Segmentation of the Images of Drainage Hole Siltation by Crystals
 
(1. CCCC Guanglian Expressway Investment Development Co., Ltd., Qingyuan 511500; 2. CCCC Fourth Harbour Engineering Research Institute Co., Ltd, Guangzhou 510220; 3. School of Civil and Transportation Engineering, Guangdong University of Technology,Guangzhou 510006)
Download: PDF (4281KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
文章导读  
摘要 为了提高隧道排水孔结晶淤堵情况的检测速度以及淤堵程度定性分析的精确程度,探究并使用了一种语义分割卷积神经网络模型DeepLab v3+ resnet18,对隧道排水孔图像进行识别。将230张排水孔图像中的成分划分为“结晶”、“排水孔壁”和“其他”三个类别,并以138张图像(样本总数的60%)训练DeepLab v3+resnet18模型,之后92张(样本总数的40%)图像进行预测。结果表明,基于此语义分割网络模型的全局准确度达95%,其中结晶类的预测准确度在75%以上,达到了对排水孔结晶淤堵图像定性分析的基本要求。此外,还将此语义分割卷积神经网络模型自编至MATLAB APP中,能够让工作人员容易、方便地进行排水孔结晶淤堵病害的图像检测(预测)工作。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
刘文建 1 张国才 2 吕建兵 3 刘 锋 3 吴维俊 3 陈贡发 3
关键词排水孔结晶淤堵   图像检测   语义分割   卷积神经网络   APP     
Abstract: In order to improve the detection speed for siltation of tunnel drainage holes by crystals and the accuracy of qualitative analysis of siltation degree, this paper explores and uses a convolutional neural network of semantic segmentation (DeepLab v3+ resnet18) to recognize the images of tunnel drainage holes. In this paper, the components in 230 drainage hole images were split into three categories: "crystal", "drainage hole wall" and "others". Furthermore, 138 images (60% of the total samples) were used to train the DeepLab v3+ resnet18 model, and the remaining 92 images (40% of the total samples) were used for image prediction. The results showed that the global accuracy based on this semantic segmentation model was up to 95%, and the prediction accuracy of crystals was over 75%, complying with the basic requirements for qualitative analysis of images of drainage hole siltation by crystals.In addition, this convolutional neural network of semantic segmentation was also self-programmed in MATLAB APP, so that staff could easily and conveniently detect (and predict) the images of drainage hole siltation by crystals.
KeywordsDrainage hole siltation by crystals,   Image detection,   Semantic segmentation,   Convolutional neural net? work,   APP     
基金资助: 
作者简介: 刘文建(1975-),男,高级工程师,主要从事公路建设管理工作,E-mail:469380871@qq.com.
引用本文:   
刘文建 1 张国才 2 吕建兵 3 刘 锋 3 吴维俊 3 陈贡发 3 .排水孔结晶淤堵图像的语义分割识别技术及APP研究[J]  现代隧道技术, 2022,V59(4): 100-107
LIU Wenjian1 ZHANG Guocai2 LV Jianbing3 LIU Feng3 WU Weijun3 CHEN Gongfa3 .Research on the Recognition Technology and APP for Sematic Segmentation of the Images of Drainage Hole Siltation by Crystals[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(4): 100-107
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2022/V59/I4/100
 
没有本文参考文献
[1] 杨 颖1 倪 凯1 葛 林2 张明飞3 王晓睿4.弱光条件下基于改进Unet模型的隧道渗水病害图像分割[J]. 现代隧道技术, 2025,62(4): 100-110
[2] 贾连辉1 郑文韬2 鲁义强1 贺 飞1 上官林建2 张玉香1 王家辉2 王景玉1.斜井TBM防下滑装置受力分析及数值计算平台开发[J]. 现代隧道技术, 2025,62(2): 79-86
[3] 李占甫1 张 雨2 汪 俊1 吕艳云2,3 芮 易2,3,4.基于深度学习的空间变异土体中隧道水平收敛安全系数计算[J]. 现代隧道技术, 2024,61(5): 88-98
[4] 杨 钊1,2 高如超1,2 姬付全1,2 陈培帅1,2 李明鹏3.基于SegFormer模型的盾构隧道管片间缝高精度测量[J]. 现代隧道技术, 2023,60(6): 175-182
[5] 王耀东 杜耀辉 高 岳.基于U-Net++网络的隧道排水孔堵塞检测方法[J]. 现代隧道技术, 2023,60(4): 76-85
[6] 罗 虎 1 Miller Mark1 张 睿 2 方 勇 1.基于计算机视觉技术和深度学习的隧道掌子面岩体裂隙自动识别方法研究[J]. 现代隧道技术, 2023,60(1): 56-65
[7] 陈莹莹 1,2 刘新根 1,2 黄永亮 3,4 李明东 1.基于神经网络与边缘修正的隧道衬砌裂缝识别[J]. 现代隧道技术, 2022,59(6): 24-34
[8] 秦尚友 1 陈佳耀 2 张东明 2 杨同军 1 黄宏伟 2 赵 帅 2.基于深度学习的隧道工作面岩石结构自动化判别[J]. 现代隧道技术, 2021,58(4): 29-36
[9] 李鹏举 1 郑方坤 2 吕建兵 3 吴维俊 3 刘 锋 3 陈贡发 3.基于大数据迁移学习的灰岩地区排水孔淤堵自动识别技术[J]. 现代隧道技术, 2021,58(4): 37-47
[10] 江 桁 1 刘学增 2 朱合华 1.基于隧道快速检测车数据的公路隧道衬砌开裂识别模型研究[J]. 现代隧道技术, 2020,57(5): 61-65
Copyright 2010 by 现代隧道技术