[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (1) :137-145    DOI:
数值分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
大直径盾构隧道下穿既有高速公路桥涵影响分析
(1.中铁二院工程集团有限责任公司,成都 610031;2.西南交通大学 交通隧道工程教育部重点实验室,成都 610031)
Analysis of the Impact of Large Diameter Shield Tunnel Crossing Existing Expressway Bridge and Culvert
(1 China Railway Eryuan Engineering Group Co., Ltd, Chengdu 610031; 2 Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031)
Download: PDF (5222KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为进一步研究大直径盾构隧道掘进时对周边建(构)筑物的影响,依托成都某铁路工程大直径盾构隧道小间距、浅覆土下穿高速公路桥涵工程,采用数值模拟分析方法,考虑桩-土-隧道相互作用,建立三维有限元计算模型,分析盾构隧道施工引起地表、桥桩、人行地道及隔离桩位移变化趋势。结果表明:盾构隧道开挖卸荷在地表形成了明显的沉降槽,但隔离桩能有效阻断土体变形,减小地表沉降;地表横向沉降曲线在隔离桩位置出现突变,隔离桩前及背后的地表沉降量降幅分别达27%及40%~50%;地表纵向沉降曲线在隔离桩范围数值减小且呈W形分布。桥桩受盾构隧道开挖卸荷影响,产生向隧道侧的附加变形及弯矩,洞身范围其变形值从下至上先增大后减小,且较小直径盾构隧道对桥桩竖向影响范围大;同时盾构隧道下穿人行地道引起结构底板附加变形较大,沉降最大值达7.5 mm;上述相关数值计算结果与现场实测结果较为吻合,验证了数值模拟结果的准确性。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
张 庆1 甄文战1 封 坤2
关键词盾构隧道   高速桥涵   数值分析   隔离桩   沉降槽     
Abstract: To further investigate the influence of large diameter shield tunnel construction on the surrounding struc? tures, based on a large diameter shield tunnel project of a railway engineering in Chengdu, combined with the characteristics of small spacing and shallow soil crossing highway bridge and culvert, the numerical analysis method is adopted to consider the interaction between pile-soil-tunnel, and a three-dimensional finite element calculation model is established. The displacement trends of ground surface, bridge pile, pedestrian tunnel and isolation pile caused by shield tunnel construction are analyzed, The simulation results show that the excavation unloading of shield tunnel forms an obvious settlement trough on the surface, but the isolation pile can effectively block the soil deformation and reduce the surface settlement; the horizontal surface settlement curve shows a sudden change at the position of the isolation pile, and the surface settlement value before and behind the isolation pile decreases by 27% and 40-50% respectively; the vertical surface settlement curve decreases in the range of the isolation pile and shows a W-shaped distribution. The bridge pile is affected by the tunnel excavation unloading, and produces additional deformation and bending moment to the tunnel side. The value of the tunnel body range increases from the bottom to the top and then decreases, and the vertical influence range of the small diameter shield is tunnel large. At the same time, the additional deformation of the structure floor caused by the shield tunnel under the pedestrian tunnel is large, and the maximum value of settlement is 7.5 mm. The above numerical calculation results are close to the field measured results, which verifies the accuracy and feasibility of the numerical simulation results.
KeywordsShield tunnel,   High-speed bridge culvert,   Numerical analysis,   Isolation pile,   Settlement tank     
基金资助:国家自然科学基金(51878569).
作者简介: 张 庆(1978-),男,高级工程师,主要从事隧道及地下工程的设计与研究工作,E-mail: zhangqing@ey.crec.cn.
引用本文:   
张 庆1 甄文战1 封 坤2 .大直径盾构隧道下穿既有高速公路桥涵影响分析[J]  现代隧道技术, 2024,V61(1): 137-145
ZHANG Qing1 ZHEN Wenzhan1 FENG Kun2 .Analysis of the Impact of Large Diameter Shield Tunnel Crossing Existing Expressway Bridge and Culvert[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(1): 137-145
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I1/137
 
没有本文参考文献
[1] 张小龙.桩基荷载作用下地铁盾构隧道结构力学响应分析[J]. 现代隧道技术, 2025,62(4): 82-89
[2] 郭永军1 李 超2 郑建国3 于永堂4 朱才辉5.地面堆载对西安黄土地层中既有盾构管片影响研究[J]. 现代隧道技术, 2025,62(4): 61-72
[3] 周弋力1 封 坤1 郭文琦1 张亮亮2 李春林3.超大直径盾构隧道管片纵缝抗弯力学行为与损伤过程研究[J]. 现代隧道技术, 2025,62(4): 163-173
[4] 易 丹1 薛皓匀2 杨绍毅2 喻 波1 封 坤2 林 刚1.盾构隧道管片结构螺栓失效对横向地震响应的影响分析[J]. 现代隧道技术, 2025,62(4): 174-181
[5] 贾永刚1 郝子晗1 鲁卫东1 吴 帆1 阳卫卫2.钢纤维混凝土管片不同接头型式力学性能研究[J]. 现代隧道技术, 2025,62(4): 182-196
[6] 谭鑫雨1 韦 猛1,2 兰灵申1 尚 强1 张海涛1.盾构刀盘结泥饼土体降黏附试验与机理研究[J]. 现代隧道技术, 2025,62(4): 219-229
[7] 刘朋飞1,2 曾德星2 王 霄3 杨 钊2 李 钰2.盾构泥饼分解剂作用效果评价试验及应用研究[J]. 现代隧道技术, 2025,62(4): 230-237
[8] 胡云进1,,2,3 朱铭伟1,2,3 郜会彩1,2,3 任智豪1,2,3.地下水渗流对能源盾构隧道换热性能的影响[J]. 现代隧道技术, 2025,62(3): 50-59
[9] 李瀚源1,2 冯 劲1 郭洪雨1 谢雄耀2 周红升1 孙 飞1.海底盾构隧道双层衬砌结构联合承载力学特性研究[J]. 现代隧道技术, 2025,62(3): 126-138
[10] 张昕阳1,2 申玉生1,2 常铭宇1,2 刘 童1,2 孙天赦3,4 胡 帅3,4.克泥效工法对泥岩地层盾构隧道地表变形控制规律研究[J]. 现代隧道技术, 2025,62(2): 283-290
[11] 于同生1,2 官林星3 闫治国1,2.地铁盾构隧道多灾害场景及结构多灾害响应研究综述[J]. 现代隧道技术, 2025,62(2): 16-26
[12] 朱叶艇1,2 朱雁飞1 王志华1,3 王帅峰4 王 浩1 马志刚1 龚 卫1,2 秦 元1.推力矢量智控盾构的理论创新、方法实现与工程验证[J]. 现代隧道技术, 2025,62(2): 71-78
[13] 肖明清1 封 坤2 薛光桥1 王运超2 鲁志鹏1 陈 龙2.软土地层盾构姿态偏移引起的附加土压力影响因素研究[J]. 现代隧道技术, 2025,62(2): 141-150
[14] 姚占虎1 杨 琴2 李 辉2 魏代伟2 孟 佳2.盾构隧道同步双液注浆技术研究与应用[J]. 现代隧道技术, 2025,62(2): 265-273
[15] 蔡浩明.基岩爆破预处理对盾构掘进状态及岩体破碎机理的影响[J]. 现代隧道技术, 2025,62(1): 192-200
Copyright 2010 by 现代隧道技术