[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (1) :137-145    DOI:
数值分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
大直径盾构隧道下穿既有高速公路桥涵影响分析
(1.中铁二院工程集团有限责任公司,成都 610031;2.西南交通大学 交通隧道工程教育部重点实验室,成都 610031)
Analysis of the Impact of Large Diameter Shield Tunnel Crossing Existing Expressway Bridge and Culvert
(1 China Railway Eryuan Engineering Group Co., Ltd, Chengdu 610031; 2 Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031)
Download: PDF (5222KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为进一步研究大直径盾构隧道掘进时对周边建(构)筑物的影响,依托成都某铁路工程大直径盾构隧道小间距、浅覆土下穿高速公路桥涵工程,采用数值模拟分析方法,考虑桩-土-隧道相互作用,建立三维有限元计算模型,分析盾构隧道施工引起地表、桥桩、人行地道及隔离桩位移变化趋势。结果表明:盾构隧道开挖卸荷在地表形成了明显的沉降槽,但隔离桩能有效阻断土体变形,减小地表沉降;地表横向沉降曲线在隔离桩位置出现突变,隔离桩前及背后的地表沉降量降幅分别达27%及40%~50%;地表纵向沉降曲线在隔离桩范围数值减小且呈W形分布。桥桩受盾构隧道开挖卸荷影响,产生向隧道侧的附加变形及弯矩,洞身范围其变形值从下至上先增大后减小,且较小直径盾构隧道对桥桩竖向影响范围大;同时盾构隧道下穿人行地道引起结构底板附加变形较大,沉降最大值达7.5 mm;上述相关数值计算结果与现场实测结果较为吻合,验证了数值模拟结果的准确性。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
张 庆1 甄文战1 封 坤2
关键词盾构隧道   高速桥涵   数值分析   隔离桩   沉降槽     
Abstract: To further investigate the influence of large diameter shield tunnel construction on the surrounding struc? tures, based on a large diameter shield tunnel project of a railway engineering in Chengdu, combined with the characteristics of small spacing and shallow soil crossing highway bridge and culvert, the numerical analysis method is adopted to consider the interaction between pile-soil-tunnel, and a three-dimensional finite element calculation model is established. The displacement trends of ground surface, bridge pile, pedestrian tunnel and isolation pile caused by shield tunnel construction are analyzed, The simulation results show that the excavation unloading of shield tunnel forms an obvious settlement trough on the surface, but the isolation pile can effectively block the soil deformation and reduce the surface settlement; the horizontal surface settlement curve shows a sudden change at the position of the isolation pile, and the surface settlement value before and behind the isolation pile decreases by 27% and 40-50% respectively; the vertical surface settlement curve decreases in the range of the isolation pile and shows a W-shaped distribution. The bridge pile is affected by the tunnel excavation unloading, and produces additional deformation and bending moment to the tunnel side. The value of the tunnel body range increases from the bottom to the top and then decreases, and the vertical influence range of the small diameter shield is tunnel large. At the same time, the additional deformation of the structure floor caused by the shield tunnel under the pedestrian tunnel is large, and the maximum value of settlement is 7.5 mm. The above numerical calculation results are close to the field measured results, which verifies the accuracy and feasibility of the numerical simulation results.
KeywordsShield tunnel,   High-speed bridge culvert,   Numerical analysis,   Isolation pile,   Settlement tank     
基金资助:国家自然科学基金(51878569).
作者简介: 张 庆(1978-),男,高级工程师,主要从事隧道及地下工程的设计与研究工作,E-mail: zhangqing@ey.crec.cn.
引用本文:   
张 庆1 甄文战1 封 坤2 .大直径盾构隧道下穿既有高速公路桥涵影响分析[J]  现代隧道技术, 2024,V61(1): 137-145
ZHANG Qing1 ZHEN Wenzhan1 FENG Kun2 .Analysis of the Impact of Large Diameter Shield Tunnel Crossing Existing Expressway Bridge and Culvert[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(1): 137-145
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I1/137
 
没有本文参考文献
[1] 包小华1,2,3 袁槐岑1,2,3 陈湘生1,2,3 沈 俊1,2,3 郭建波4 沈 翔1,2,3 崔宏志1,2,3.水下盾构隧道建造与运维技术研究现状与展望[J]. 现代隧道技术, 2024,61(1): 16-35
[2] 郝鹏飞.预制整体式弧形件施工质量控制指标研究[J]. 现代隧道技术, 2024,61(1): 245-251
[3] 黄煊博1, 2 丁文其1, 2 张清照1, 2.波纹钢衬砌法兰接头受弯力学性能数值分析[J]. 现代隧道技术, 2024,61(1): 96-106
[4] 肖明清1, 3 封 坤2 王少锋1, 3 杨 昊2 郭文琦2.内部结构施作方式对公轨合建盾构隧道内爆炸动力响应的影响研究[J]. 现代隧道技术, 2024,61(1): 107-116
[5] 郑镇跡1 黄书华2 陈湘生1 张 良2 刘皓铭1 盛 健2 苏 栋1.超大直径盾构主隧道机械法联络通道特殊衬砌管片受力特性分析[J]. 现代隧道技术, 2024,61(1): 117-124
[6] 段现彪1 黄煊博2,3 张清照2,3 徐永金1.富水半成岩隧道综合降排水措施效果及稳定性分析[J]. 现代隧道技术, 2024,61(1): 146-155
[7] 石钰锋1,2 蔡家城1 张 涛3 张晗秋4 李君贤1 顾大均5.冻结法地铁联络通道施工对邻近盾构隧道管片影响的测试分析[J]. 现代隧道技术, 2024,61(1): 190-199
[8] 曾 毅1 高 越2,3 吴沛霖2,3 张小龙1 付艳斌2,3.既有盾构隧道抬升模型试验研究[J]. 现代隧道技术, 2024,61(1): 200-207
[9] 王德福.盾构滚刀切削桩基相互作用机理及关键参数分析研究——以海珠湾盾构隧道为例[J]. 现代隧道技术, 2024,61(1): 216-228
[10] 郇昊霖1 李培楠2 刘 俊1 宋兴宝3 秦 元3 寇晓勇3 翟一欣3.大直径盾构隧道内部装配式预制结构安装路径优化及应用[J]. 现代隧道技术, 2024,61(1): 236-244
[11] 艾 青1 李一轩1 朱俊易2.越江盾构隧道全寿命期碳排放特征与减排途径研究[J]. 现代隧道技术, 2023,60(6): 11-19
[12] 王承震1 丁万涛2,3 于文端1 王志成1 孙腾云1 王中荣2.越海泥水盾构隧道泥浆流变特征试验研究[J]. 现代隧道技术, 2023,60(6): 237-245
[13] 杨 钊1,2 高如超1,2 姬付全1,2 陈培帅1,2 李明鹏3.基于SegFormer模型的盾构隧道管片间缝高精度测量[J]. 现代隧道技术, 2023,60(6): 175-182
[14] 肖明清1 钟元元2 陈 鹏3 王 峻4 戚兆臣5 张卫斌6.盾构隧道管片接缝密封垫气密性提升试验研究[J]. 现代隧道技术, 2023,60(6): 262-268
[15] 薛光桥1,2 肖明清1,2 封 坤3 王少锋1,2 薛皓匀3 郭文琦3.特大直径双层公路盾构隧道管片-内部结构复合体系横向抗震性能研究[J]. 现代隧道技术, 2023,60(5): 67-77
Copyright 2010 by 现代隧道技术