[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2025, Vol. 62 Issue (4) :100-110    DOI:
绿色智能建造 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
弱光条件下基于改进Unet模型的隧道渗水病害图像分割
(1.保利长大工程有限公司,广州 510640;2.河南省沁伊高速公路有限公司,郑州450003;3.郑州航空工业 管理学院土木与环境学院,郑州450046;4.华北水利水电大学地球科学与工程学院,郑州450045)
Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions
(1. Poly Changda Engineering Co. Ltd., Guangzhou 510640; 2. Henan Qinyi Expressway Co. Ltd., Zhengzhou 450003; 3. School of Civil Engineering and Environment, Zhengzhou University of Aeronautics, Zhengzhou 450046; 4. College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045)
Download: PDF (6761KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 计算机视觉技术为隧道渗水区域检测提供了一种智能化手段,但受隧道内光线不足以及管线遮挡等 复杂环境影响,病害特征提取和分割的精确度受限。鉴于此,以Unet为基线模型,提出一种隧道渗水区域分割网络 Light-Unet模型。具体包括:(1)针对隧道内渗水区域提取准确性低的问题,在基线模型中引入光影变换引导项,并 设计平行注意力模块提取引导项内部信息,通过加强通道注意力模块实现对引导项及网络深层信息的深度聚合; (2)针对隧道渗水区域数据集稀少的问题,在某施工隧道人工采集数据集,并运用透视变换改变相机视角,以扩充 数据集;(3)针对隧道中光线不足的问题,在数据集的图像中随机添加高斯噪声与椒盐噪声,来模拟昏暗场景下拍 摄的图像,增强网络的泛化性。最终,运用构建的训练集训练 Light-Unet 网络,网络的 mIoU 为 88.84%,mDice 为 88.04%,均显著高于基线模型。以可视化的形式对比改进网络与基线网络,结果表明,改进网络能够更好地适应隧 道内复杂环境下(弱光及线路遮挡)的渗水区域分割。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
杨 颖1 倪 凯1 葛 林2 张明飞3 王晓睿4
关键词隧道渗水   语义分割   Unet模型   注意力机制   数据增强     
Abstract: Computer vision technology offers an intelligent solution for tunnel seepage area detection, yet its feature extraction and segmentation accuracy remains constrained by low-light conditions and pipeline obstructions. This study proposes a Light-UNet model based on the Unet model, an enhanced tunnel seepage zone segmentation network with three key contributions: (1) To enhance the extraction accuracy of the seepage area, a light-shadow transformation boot item is introduced, and a parallel attention module is designed to extract internal information of the boot item. Subsequently, channel attention mechanisms are employed to aggregate the boot item with deep network information. (2) To overcome the scarcity of tunnel seepage datasets, the data was manually collected from a tunnel under construction. Perspective transformation was used to alter camera angles and expand the dataset. (3) To address insufficient lighting in tunnels, Gaussian noise and salt-and-pepper noise were randomly added to the dataset images to simulate images captured in dim environments, thereby enhancing the network’s generalization ability. Ultimately, the Light-Unet network was trained using the constructed training set, achieving a mean Intersection over Union (mIoU) of 88.84% and a mean Dice coefficient (mDice) of 88.04%, both significantly higher than the Unet baseline model. Visualization comparisons between the improved and baseline networks demonstrate that the improved network better adapts to the segmentation of seepage areas in complex environments, including poor lighting and pipeline obstructions.
KeywordsTunnel water seepage,   Semantic segmentation,   UNet model,   Attention mechanism,   Data augmentation     
基金资助:国家自然科学基金(41902266);河南省重点研发专项(251111240800).
作者简介: 杨 颖(1982-),男,高级工程师,主要从事高速公路施工管理等方面的工作,E-mail:254015472@qq.com. 通讯作者:王晓睿(1975-),男,教授,博士生导师,主要从事岩土工程、城市地下空间技术方面,E-mail: wangxiaorui@ncwu.edu.cn.
引用本文:   
杨 颖1 倪 凯1 葛 林2 张明飞3 王晓睿4 .弱光条件下基于改进Unet模型的隧道渗水病害图像分割[J]  现代隧道技术, 2025,V62(4): 100-110
YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4 .Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]  MODERN TUNNELLING TECHNOLOGY, 2025,V62(4): 100-110
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2025/V62/I4/100
 
没有本文参考文献
Copyright 2010 by 现代隧道技术