[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2025, Vol. 62 Issue (5) :116-    DOI:
绿色智能建造 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
基于NRBO-XGBoost 的TBM掘进速率预测及可解释性分析
(1.安徽理工大学土木建筑学院,淮南 232001; 2.安徽理工大学 深部煤炭安全开采与环境保护
全国重点实验室,淮南 232001; 3.攀枝花学院钒钛学院,攀枝花 617000;4. 淮南矿业(集团)有限责任公司,淮南 232001)
BM Advance Rate Advance and Interpretability Analysis Using the #br# NRBO-XGBoost Method
(1. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001;
2. State Key Laboratory for Safe Mining of Deep Coal Resources and Environment Protection, Anhui University of Science and
Technology, Huainan 232001; 3. Vanadium and Titanium Institute of Panzhihua University, Panzhihua 617000;
4. Huainan Mining (Group) Co., Ltd., Huainan 232001)
Download: PDF (4674KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 掘进速率是反映全断面掘进机TBM(Tunnel Boring Machine)与围岩相互作用的关键指标,其可靠预测对优化TBM性能具有重要意义。文章提出一种基于牛顿-拉斐尔优化算法(NRBO)改进极限梯度提升算法(XGBoost)的混合模型(NRBO-XGBoost),用于TBM掘进速率预测。基于安徽淮南某煤矿西翼瓦斯综合治理巷TBM施工数据库中的350条样本数据对模型进行训练验证,采用决定系数(R2)、均方根误差(RMSE)与平均绝对误差(MAE)3项指标评估模型的能力和实用性。研究结果表明:NRBO算法能够有效优化XGBoost的超参数,NRBO-XGBoost模型具备良好的稳定性和泛化能力;在测试阶段,NRBO-XGBoost模型的R²、RMSE和MAE分别为0.981、0.792和0.512,优于单一XGBoost模型;在预测新数据上,NRBO-XGBoost模型也能够获得稳定的预测结果;基于SHAP加性解释方法从全局与个体层面分析输入参数对掘进速率预测结果的重要性,输入参数重要性排序前6依次为贯入度、刀盘钻速、岩体耐磨值、推力、扭矩和岩体抗压强度。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
赵 能1 唐 彬1
2 程 桦1 姚直书1 刘小虎1 侯俊领3 沈仁为4 李宏亮4
关键词掘进速率   全断面掘进机   牛顿-拉斐尔优化   极限梯度提升   可解释模型     
Abstract: Advance rate is a key indicator reflecting the interaction between tunnel boring machines (TBMs) and surrounding rock, and its reliable prediction is essential for TBM performance optimization. A hybrid model combining the Newton-Raphson-Based Optimization (NRBO) algorithm with the Extreme Gradient Boosting method (XGBoost), referred to as NRBO-XGBoost, is proposed to predict TBM advance rate. A total of 350 sample data from a TBM construction project in the west wing gas control roadway of a coal mine in Huainan, Anhui Province, were collected to train and validate the model. The capability and applicability of the model were evaluated using the coefficient of determination (R²), root mean square error (RMSE), and mean absolute error (MAE). The results demonstrate that the NRBO algorithm effectively optimizes the hyperparameters of XGBoost, enabling the NRBO-XGBoost model to achieve high stability and generalization performance. In the testing phase, the R², RMSE, and MAE values of the NRBO-XGBoost model reached 0.981, 0.792, and 0.512, respectively, outperforming the standalone XGBoost model. Additionally, stable prediction results were also obtained for new data. Based on the SHapley Additive exPlanations (SHAP) method, the importance of input parameters was analyzed from both global and individual perspectives, showing that the top six influential variables were penetration index, cutterhead rotational speed, rock abrasion value, thrust, torque, and compressive strength of the rock.
KeywordsAdvance rate,   Tunnel boring machine,   Newton-Raphson-based optimization,   Extreme gradient boosting,   Interpretable model     
基金资助:国家自然科学基金项目(51804006);安徽省自然科学基金面上项目(2208085ME118).
作者简介: 赵 能(1998-),男,博士研究生,主要从事矿山岩土工程方面的研究,E-mail:zhaoneng0320@163.com.
引用本文:   
赵 能1 唐 彬1, 2 程 桦1 姚直书1 刘小虎1 侯俊领3 沈仁为4 李宏亮4 .基于NRBO-XGBoost 的TBM掘进速率预测及可解释性分析[J]  现代隧道技术, 2025,V62(5): 116-
ZHAO Neng1 TANG Bin1, 2 CHENG Hua1 YAO Zhishu1 LIU Xiaohu1 HOU Junling3 .BM Advance Rate Advance and Interpretability Analysis Using the #br# NRBO-XGBoost Method[J]  MODERN TUNNELLING TECHNOLOGY, 2025,V62(5): 116-
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2025/V62/I5/116
 
没有本文参考文献
Copyright 2010 by 现代隧道技术