文章编号:1009-6582(2022)02-0053-09

DOI: 10.13807/j.cnki.mtt.2022.02.007

引文格式:赵金,文丽娜,吴红刚,等.隧道-洞口滑坡平行体系受力变形模式与计算方法研究[J]. 现代隧道技术, 2022, 59(2): 53-61.
 ZHAO Jin, WEN Lina, WU Honggang, et al. Study on Modes and Calculation Method of Stress and Deformation of Tunnel-Portal Landslide Parallel System[J].Modern Tunnelling Technology, 2022, 59(2): 53-61.

隧道-洞口滑坡平行体系受力变形模式 与计算方法研究

赵金 文丽娜¹ 吴红刚^{2,3,4} 周驰词¹ (1.四川省公路规划勘察设计研究院有限公司,成都 610041; 2.中铁西北科学研究院有限公司, 兰州 730070; 3.中国中铁滑坡工程实验室,兰州 730070; 4.西部环境岩土与场地修复技术工程实验室, 兰州 730070)

摘 要:我国目前对隧道-滑坡工程的设计尚无可供参照的行业标准,尤其是滑坡洞口段隧道缺少相应的计算 理论。文章首先以平行体系中隧道-洞口滑坡为研究对象,通过归纳总结滑坡地段隧道衬砌的病害特征,构建了相 应的工程地质模型;然后将剩余滑坡推力视为导致隧道变形破坏的直接原因,通过荷载传递规律得到作用于隧道结 构上的附加荷载,将其与围岩压力叠加推导出了隧道外荷载的计算公式;接着采用弹性地基梁理论,推导出滑坡推 力作用下的隧道内力计算方法,从而得到隧道-洞口滑坡的受力变形模式及计算理论;最后通过模型试验对其合理 性进行了验证分析,结果表明该方法与实际工程相符,能够为滑坡地段洞口隧道的设计提供参考。

关键词:隧道-洞口滑坡;病害特征;地质模型;附加荷载;变形模式 中图分类号:U452.2^{*7} 文献标识码:A

1引言

收稿日期:2021-05-22

隧道作为陆路交通工程中重要的结构物,对社 会、经济的发展具有极大的促进作用。特别是在山 岭地区,可克服地形或高程障碍,具有缩短线路里 程,改善线形,节省空间,保护植被等优势。因此,在 庞大的交通体系中,隧道工程占据着举足轻重的地 位。同时我国地质灾害频发,其中滑坡灾害占65% 左右,对隧道工程的安全修建和顺利运营构成了巨 大的威胁,虽然在线路选线时采用"地质选线"的方 法尽可能将其绕避,但是随着对线路平顺性、舒适性 的要求越来越高,以及工程造价等因素影响,不得不 在极有可能存在滑坡等不良地质问题的地段修建隧 道^[1-3]。同时已投入运营的隧道也可能因自然或人为 因素导致边坡岩土体蠕滑而产生病害,形成大量的 隧道-洞口滑坡问题^[45],引起了岩土与地下工程研究 者的重视,学者们对此进行了大量的理论和实践研究。

吴红刚等¹⁰在总结既有隧道滑坡病害的基础上 提出了隧道-滑坡体系的概念,将其分为正交体系、 平行体系和斜交体系,并对各种体系的变形机理进 行了初步探索。邢军等¹⁷⁷采用数值模拟和模型试验 的方法对具体的隧道-洞口滑坡工程作用机理进行 了分析,提出了相应的地质力学模型。刘天翔等¹⁸¹ 以西南山区某高速公路隧道正交穿越深厚老滑坡为 工程背景,采用数值分析方法对坡体、隧道的应力、 变形等进行了详细计算,得到了这类隧道-滑坡体 系的相互作用引发的工程病害机制。张治国等¹⁹¹通 过数值模拟对影响隧道-滑坡受力模式的滑坡推 力、滑体内地基系数、滑床内地基系数、隧道衬砌刚 度以及隧道长度等因素进行了分析,提出了相应的 理论解析方法。陈小云等¹¹⁰¹、吴红刚等^{111,121}进行了

修回日期:2021-08-08 基金项目:国家重点研发计划项目(2018YFC1504901);四川省科技厅重点研发计划项目(2020YFS0361);四川省交通运输科技项目(2021-ZL-07). 作者简介:赵 金(1992-),男,硕士,工程师,主要从事岩土和边坡工程方面的研究工作,E-mail:2274211481@qq.com. 通讯作者:吴红刚(1983-),男,博士,高级工程师,硕士生导师,主要从事岩土和边坡工程方面的研究工作,E-mail:271462550@qq.com.

第59卷第2期(总第403期),2022年4月出版

53

现代隧道技术 MODERN TUNNELLING TECHNOLOGY

较为深入的正交体系和平行体系下隧道-滑坡力学 模型的简化与加固研究,提出了隧道下穿滑坡附加 荷载的计算方法。

上述学者大多只是针对某个具体工程中的问题 进行分析,对隧道-滑坡系统的理论研究较少,尤其 是平行体系中滑坡洞口段隧道的设计缺少相应的计 算理论和标准。因此,本文以隧道-洞口滑坡平行 体系为研究对象,建立基于隧道衬砌变形特征的工 程地质模型,将条块剩余滑坡推力通过荷载传递规 律作用于隧道结构上,并将其与围岩压力叠加推导 出隧道外荷载的计算方法,结合弹性地基梁理论,得 到隧道-洞口滑坡的受力变形模式及计算方法,并 通过模型试验进行了分析验证。

2 典型工程实例分析

洞口段隧道受滑坡推力的影响,其拱部首先发 生变形,并随着坡体的蠕滑而沿着隧道轴向产生破 坏。该类型的典型工程实例有武罐路圆台子隧道-滑坡、阳坡里隧道-滑坡等。通过总结隧道-洞口滑 坡病害的特征,发现洞口段隧道在滑坡推力作用下 的变形具有一定的规律,拱部和边墙结构裂缝发展 规律一致,将隧道-洞口滑坡工程实例简化为相应 的工程地质模型,如表1所示。

3 洞口段隧道外荷载计算方法

工程	丁程地质断面图	隧道滑坡变形特征	抽話模刑	隧道与滑坡力学
实例		应适 H 秋文// 计 而	地质快生	作用机理
		武罐高速圆台子隧道-滑坡位于地		通过分析隧道的
		形起伏且河道崎岖的洛塘河左岸。		变形特征,发现
		左线隧道洞身长570m,右线长540		洞口段隧道结构
		m,最大埋深为171.3m,南端出口由		在滑坡推力作用
		于河道下切且位于碎石层中,导致		下的变形模式主
		洞口开挖施工时洞口滑坡体局部变		要表现为纵向的
武罐	<u>SKICI-3</u> 罐子沟 口	形失稳、塌滑。自2010年10月1日	3	弯曲变形和滑面
高速	13.5 m 2010年11月2日弧形裂缝	以来,右线隧道的开挖扰动造成了	36L 7FT	附近的剪切变
周公	SKJCI-2 30.5m	坡体的蠕滑变形,导致洞内钢拱架		形。隧道结构在
二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	2010年11月1日日本時外有各分的11年 2010年10日15日1年副会打 医近辺論 2010年10日15日1年副会打 医近辺論	喷射的混凝土表层、洞口仰坡和山		受到滑坡推力的
1应	2010年10月18日7月25日 2010年10月25日 1#隧道仰坡裂缝	体表面多处产生弧形裂缝。通过现	1	作用时,其本身
過過	11月3日42 m工作面处发现。 滑动带,没黄色黏土状。 割试 测试	场监测发现:在1-1号位移监测孔		的平衡状态被打
旧收	软塑, 0.4~1.3 而厚	附近区域产生多条横向微裂缝,并	(a)隧道-洞口滑坡相互作用示意	破,自承能力不
		不断发展贯通;靠近1-3号监测孔		足以抵消滑坡的
		的坡体后部产生大量的弧形裂缝,		影响,导致沿轴
		其宽度由刚产生的1 cm不断扩展到		向产生向下的弯
		5 cm,深度达40 cm。同时在隧道	滑坡推力	曲变形。同时在
		左、右线开挖施工中均发现擦痕明	供與薄勒部位這成 剪切错台和拱部突 发性的压溃破坏	下部土体的支撑
		显的滑动带	洞口段在滑坡推力 作用下直接被剪断 破坏	作用下,拱部受
		阳坡里隧道位于面向洛塘河流动方	状面纵向弯曲变 形、易在隧道顶 部圆曲纵射面产	到的影响最大,
		向的右岸区域,长696.38m,最大埋	至生痰时熟间张 拉裂缝	产生张拉裂缝,
		深为138.5m,隧道罐子沟端平行穿		拱部下沉。特别
	高程/m 武都 罐子沟	越滑坡体。由于滑坡体前缘被河水	(b)洞口段隧道变形特征 ^[13]	是对于靠近滑面
武罐	1120	不断的冲刷、切割,削弱了坡脚的支		的区域,由于此
高速	1080 块石土	撑作用,形成临空面,使抗滑力不足		处滑坡推力最
阳坡	1040	以平衡下滑力,导致滑坡体在水平		大,使隧道承受
里隧	1020 弱风化砂质板岩夹千枚岩 岩层产壮:185° 455°	和竖直向上蠕滑变形,产生较大的		的弯矩、剪力均
道-	1000 決获:185° ∠555 第031	位移。同时降雨及地表水入渗,进		最大,导致弯曲
滑坡	1060	一步软化滑带,使其抗剪强度降低,		变形、剪切变形
	田谷(1000) 田田(1000) 田(100) 田(1000)	导致滑坡后壁沿变质砂岩与坡积块		也最大,隧道结
		石土的分界面拉裂,后缘出现大量		构在此位置首先
		的拉裂缝,滑坡体整体滑移失稳。		发生破坏,产生
		隧道拱部产生大量的环形裂缝,洞		错动,形成剪切
		口段局部向下弯曲变形		错台
			IV	

表1 隧道-洞口滑坡平行体系工程实例分析及地质模型简化 Table 1 Case analysis and geological model simplification of tunnel-portal landslide parallel system

第59卷第2期(总第403期),2022年4月出版

54

Vol.59, No.2 (Total No.403), Apr.2022

分析地质模型可知,洞口段隧道在无滑坡影响 时,其主要受到围岩压力的作用,处于力学平衡状态。当滑坡产生并作用于隧道结构时,此平衡状态 即被打破,隧道拱部首先受到滑坡推力产生的附加 荷载影响而发生弯曲变形,同时隧道底部滑体处于 抗滑段而受到基底反力(岩土抗力)的作用,从而导

3.1 作用于隧道结构的滑坡推力分布

致洞口段隧道发生变形破坏。

隧道结构受到的剩余滑坡推力合力可由传递系 数法求得。由于隧道具有抵抗滑坡向下滑动的作 用,类似于抗滑桩,所以其截面上的滑坡推力分布与 抗滑桩相似。普遍认为作用于抗滑桩等支挡结构的 滑坡推力分布形式有三角形、矩形、梯形三种,当滑 体的黏聚力较大时,通常采用矩形分布形式;当滑体 是一种以内摩擦角为主要抗剪特性的堆积体(砂土) 时,推力分布可近似以三角形分布考虑;介于两者之 间,则按梯形分布考虑^[4]。为了说明剩余滑坡推力 的推导过程,采用较复杂的梯形分布来计算,其计算 形式如图1所示。

则剩余滑坡推力合力为:

$$E = \int_{h_1}^{h_2} (az + c) dz$$

= $\left(\frac{a}{2}z^2 + cz\right) \Big| \frac{h_2}{h_1}$
= $\frac{a}{2}h_2^2 + ch_2 - \frac{a}{2}h_1^2 - ch_1$
= $\frac{a}{2}(h_2^2 - h_1^2) + c(h_2 - h_1)$ (1)

另有:

$$\int_{h_{1}}^{h_{2}} (az + c) z \cos\beta dz = E \cdot kh_{2} \cos\beta$$

$$\left(\frac{a}{3}z^{3} + \frac{c}{2}z^{2}\right) \Big|_{h_{1}}^{h_{2}} = Ekh_{2}$$

$$\frac{a}{3}(h_{2}^{3} - h_{1}^{3}) + \frac{c}{2}(h_{2}^{2} - h_{1}^{2}) = Ekh_{2}$$
(2)

将式(1)和式(2)联立,可得:

$$\begin{cases} \frac{a}{2}(h_2^2 - h_1^2) + c(h_2 - h_1) = E \\ \frac{a}{3}(h_2^3 - h_1^3) + \frac{c}{2}(h_2^2 - h_1^2) = E \cdot kh_2 \end{cases}$$
(3)

解方程组得:

c =

$$a = \frac{\left[12kh_2 - 6(h_2 + h_1)\right]E}{(h_2 - h_1)^3}$$
(4)

$$\frac{E(h_2 - h_1)^2 - [6kh_2 - 3(h_2 + h_1)]E(h_2 + h_1)}{(h_2 - h_1)^3}$$
(5)

$$q(z) = \frac{\left[12kh_2 - 6(h_2 + h_1)\right]E}{(h_2 - h_1)^3}z + \frac{E(h_2 - h_1)^2 - \left[6kh_2 - 3(h_2 + h_1)\right]E(h_2 + h_1)}{(h_2 - h_1)^3}$$
(6)

带入
$$z = h_i, E = p_i, 则滑坡推力的荷载分布为:$$

$$q_{z} = \frac{\left[\frac{12kh_{2} - 6(h_{2} + h_{1})\right]p_{i}}{(h_{2} - h_{1})^{3}}h_{i} + \frac{p_{i}(h_{2} - h_{1})^{2} - \left[\frac{6kh_{2} - 3(h_{2} + h_{1})\right]p_{i}(h_{2} + h_{1})}{(h_{2} - h_{1})^{3}}$$
(7)

式中:h₁为与隧道接触条块的高度;p_i为传递系数法 计算条块作用于隧道的滑坡推力合力;h_i为滑面到 条块竖向位置的高度;h₂为地面到滑面的竖直高度; kh₂为滑坡合力作用点距滑面的距离。

隧道与滑面相交时,主要承受滑坡推力和围岩压 力的作用,滑坡主滑段产生的剩余滑坡推力直接作用 于与滑面相交的隧道结构上,且对相邻的土体产生影 响。由于在传递系数法计算中,主滑段与抗滑段交界 处剩余滑坡推力最大,且为了考虑隧道结构的最不利 荷载,将隧道布置在此区域进行计算^[15]。

在滑坡推力的计算中, 假定土体不可压缩, 上部 坡体累积的滑坡推力通过与隧道相邻的土块传递到 隧道结构上, 对隧道产生影响, 其作用在隧道上的滑 坡推力分布如图2所示。

位于基岩和滑体中的隧道同时受到滑坡推力的 影响,由于基岩中隧道埋深较深且不与滑体直接接 触,受到滑坡推力对其产生的附加荷载的影响较小, 对隧道拱部有一定的扰动。但是,一般不会导致隧 道变形破坏,与工程实例中一致。而位于滑体中的 隧道在滑坡推力q₂。作用下,既承受竖直方向上的荷 载,也受到轴向的水平荷载,在拉弯作用下极易产生 变形破坏,尤其是与滑带相交的区段,故主要对洞口 段位于滑体内隧道的受力模式进行计算分析。为了

第59卷第2期(总第403期),2022年4月出版 55

隧道-洞口滑坡平行体系受力变形模式与计算方法研究

说明隧道在滑坡推力作用下的受力变形特征和方便 计算,将滑坡推力沿水平方向和竖直方向分解,如图3 所示。

图3 滑坡推力分解示意

Fig.3 Decomposition of landslide thrust acting on tunnel

3.2 隧道轴向荷载的计算方法

剩余滑坡推力通过滑坡推力影响区的土体传递 到隧道结构上,假定这部分土体不可压缩,则作用于 隧道的推力为q_{zo}。

$$q_{z_0} = q_z \tag{8}$$

将作用于隧道*A*点到*B*点的滑坡推力沿水平方向分解为:

$$q_{h_{1}} = q_{z_{0}} \cos\beta = \frac{\left[12kh_{2} - 6(h_{2} + h_{1})\right]p_{i}}{(h_{2} - h_{1})^{3}}h_{i}\cos\beta + \frac{p_{i}(h_{2} - h_{1})^{2} - \left[6kh_{2} - 3(h_{2} + h_{1})\right]p_{i}(h_{2} + h_{1})}{(h_{2} - h_{1})^{3}}\cos\beta$$
(9)

竖直方向分解为:

$$q_{v_1} = q_{z_0} \sin\beta = \frac{\left[12kh_2 - 6(h_2 + h_1)\right]p_i}{(h_2 - h_1)^3}h_i \sin\beta + \frac{p_i(h_2 - h_1)^2 - \left[6kh_2 - 3(h_2 + h_1)\right]p_i(h_2 + h_1)}{\sin\beta}$$
(10)

水平方向:

 $(h_2 - h_1)^3$

$$Q_{h} = q_{h_{1}} = \frac{\left[12kh_{2} - 6(h_{2} + h_{1})\right]p_{i}}{(h_{2} - h_{1})^{3}}h_{i}\cos\beta +$$
(11)
$$\frac{p_{i}(h_{2} - h_{1})^{2} - \left[6kh_{2} - 3(h_{2} + h_{1})\right]p_{i}(h_{2} + h_{1})}{(h_{2} - h_{1})^{3}}\cos\beta$$
(21)
$$\underbrace{\mathbb{E} \hat{\Xi} \hat{D} \hat{\Box} \hat{\Box}}_{Q_{v}} = Q_{pv} + q_{v_{1}} = \frac{\gamma}{2}\left[(h + h')B - (\lambda h^{2} + \lambda' h'^{2})\tan\theta\right] + \frac{p_{i}(h_{2} - h_{1})^{2} - \left[6kh_{2} - 3(h_{2} + h_{1})\right]p_{i}(h_{2} + h_{1})}{(h_{2} - h_{1})^{3}}\sin\beta$$
(12)
$$+ \frac{\left[12kh_{2} - 6(h_{2} + h_{1})\right]p_{i}}{(h_{2} - h_{1})^{3}}h_{i}\sin\beta$$

式中: $Q_{\mu\nu}$ 为拱部围岩压力,参照《铁路隧道设计规 范》(TB 10003—2016)^[16]选取; β 为滑面倾角(°); h, h'分别为内、外侧由拱顶水平至地面的高度 (m);B为坑道跨度(m); γ 为围岩重度(kN/m³); θ 为 顶板土柱两侧摩擦角(°),当无实测资料时,可按照 《铁路隧道设计规范》(TB 10003—2016)^[16]选取; λ, λ' 为内、外侧的侧压力系数,按照《铁路隧道设计 规范》(TB 10003—2016)^[16]选取; h_i 为滑面到条块竖 向位置的高度(m)。

on tunnel arch

3.3 隧道截面荷载计算方法

隧道截面拱部结构受围岩压力和滑坡推力的共 同作用,将两者叠加即为隧道拱部所受的外荷载。 同时隧道边墙受滑坡推力产生的附加荷载可根据经 典土力学中关于附加应力求解的"罗西提法"求得, 但是由于其值相对围岩压力较小,影响可忽略。因 此边墙结构所受的外荷载只由围岩压力产生,计算 示意如图5所示。

作用于边墙结构的外荷载为:

$$q_{\rm h} = \gamma \lambda h_i \tag{14}$$

式中:q_{pv}、q_h分别为隧道截面拱部和边墙结构承受的 围岩压力,参照《铁路隧道设计规范》(TB 10003— 2016)¹¹⁶¹选取。

4 洞口段隧道受力变形模式及计算方法

在外荷载作用下,隧道向仰拱底部的土体挤压, 由于抗滑力的作用使底部滑体未滑动,产生岩土抗 力,对隧道起支撑作用,为地梁结构受力,其受力模 式如图6所示。

图 6 洞口段隧道的受力模式 Fig.6 Stress pattern at tunnel portal section

此次计算有如下假定:(1)隧道与周围土体紧 密接触,且变形协调一致;(2)隧道结构处于弹性工 作阶段,未发生屈服破坏,没有受到其他外部支撑的

(. . .

~ 1

(b)滑坡体内隧道半无限长梁模型

图7 隧道-洞口滑坡计算模型 Fig.7 Calculation model of tunnel- portal landslide

对滑坡体内隧道(图7),首先依据弹性地基梁的 计算理论,可得荷载引起的半无限长梁的挠度曲线为: $w = e^{\lambda x} (c_3 \cos \lambda x + c_4 \sin \lambda x)$ (15) 式中: c_{3}, c_{4} 为待定系数,可根据该梁在x = 0的边界 条件求出; $\lambda = \sqrt[4]{\frac{kb}{4EI}}$,其中,E为隧道复合式衬砌的 综合弹性模量,I为隧道的截面惯性矩,k为地基基 床系数,参照文献[17]选取,b为隧道的宽度。 令 $h_i = x, 则$:

Vol.59, No.2 (Total No.403), Apr.2022

现代隧道技术 MODERN TUNNELLING TECHNOLOGY

c L

洞口段隧道外荷载的合力为:
$$P = \int_0^t Q_v dx$$
。
受集中力的半无限长梁计算模型如图 8 所示
则 $x > 0$ 时的隧道挠度曲线为:

$$w = \frac{\lambda \int_{0}^{0} Q \cdot dx}{4kb} A(x) + \frac{2\lambda}{kb} \left[D\left(\frac{2}{3}L\right) D\left(x + \frac{2}{3}L\right) + \frac{1}{2} C\left(\frac{2}{3}L\right) D\left(x + \frac{2}{3}L\right) - \frac{1}{2} C\left(\frac{2}{3}L\right) B\left(x + \frac{2}{3}L\right) \right] (17)$$

式中: $A(x) = e^{-\lambda x} (\cos \lambda x + \sin \lambda x); B(x) = e^{-\lambda x} \sin \lambda x;$ $C(x) = e^{-\lambda x} (\cos \lambda x - \sin \lambda x); D(x) = e^{-\lambda x} \cos \lambda x; L$ 为 隧道洞口至滑面的距离。

图 8 隧道-洞口滑坡简化计算模型 Fig.8 Simplified calculation model of tunnel-portal landslide

洞口段隧道任一截面的转角θ、弯矩*M*、剪力*Q* 分别为:

$$\theta = \frac{\mathrm{d}w}{\mathrm{d}x} = \frac{\lambda P}{4kb} A'(x) + \frac{2\lambda}{kb} \left[D\left(\frac{2}{3}L\right) \left(\frac{2}{3}L\right) D'\left(x + \frac{2}{3}L\right) + \frac{1}{2}C\left(\frac{2}{3}L\right) D'\left(x + \frac{2}{3}L\right) - \frac{1}{2}C\left(\frac{2}{3}L\right) B'\left(x + \frac{2}{3}L\right) \right]$$
(18)
$$M = -EI \frac{\mathrm{d}^2 w}{\mathrm{d}^2 x} = -EI \left\{ \frac{\lambda P}{4kb} A''(x) + \frac{2\lambda}{kb} \left[D\left(\frac{2}{3}L\right) \left(\frac{2}{3}L\right) D''\left(x + \frac{2}{3}L\right) + \frac{1}{2}C\left(\frac{2}{3}L\right) D''\left(x + \frac{2}{3}L\right) - \frac{1}{2}C\left(\frac{2}{3}L\right) B''\left(x + \frac{2}{3}L\right) \right] \right\}$$
(19)
$$Q = -EI \frac{\mathrm{d}^3 w}{\mathrm{d}^3 x} = -EI \left\{ \frac{\lambda P}{4kb} A'''(x) + \frac{2\lambda}{kb} \left[D\left(\frac{2}{3}L\right) \left(\frac{2}{3}L\right) D'''\left(x + \frac{2}{3}L\right) + \frac{1}{2}C\left(\frac{2}{3}L\right) D'''\left(x + \frac{2}{3}L\right) - \frac{1}{2}C\left(\frac{2}{3}L\right) B'''\left(x + \frac{2}{3}L\right) \right] \right\}$$
(20)

可得到隧道内力分布情况如图9所示。

图 9 洞口段隧道内力分布情况 Fig.9 Distribution of internal force at tunnel portal section

根据受力模式可知,最大弯矩、剪力均位于外荷 载合力作用点处,即 $x = \frac{2}{3}L$ 处,其弯矩值、剪力值按 式(21)、式(22)计算。

$$M_{2/3} = -EI\left\{\frac{\lambda P}{4kb}A''\left(\frac{2}{3}L\right) + \frac{2\lambda}{kb}\left[D\left(\frac{2}{3}L\right)\left(\frac{2}{3}L\right)D''\left(\frac{4}{3}L\right) + \frac{1}{2}C\left(\frac{2}{3}L\right)D''\left(\frac{4}{3}L\right) - \frac{1}{2}C\left(\frac{2}{3}L\right)B''\left(\frac{4}{3}L\right)\right]\right\}$$
(21)

$$Q_{2/3} = -EI\left\{\frac{\lambda P}{4kb}A'''(x) + \frac{2\lambda}{kb}\left[D\left(\frac{2}{3}L\right)\left(\frac{2}{3}L\right)D'''\left(\frac{4}{3}L\right) + \frac{1}{2}\left[O\left(\frac{2}{3}L\right)D'''\left(\frac{4}{3}L\right) + \frac{1}{2}\left[O\left(\frac{2}{3}L\right)D'''\left(\frac{4}{3}L\right)\right]\right]$$
(22)

$$\frac{1}{2}C\left(\frac{2}{3}L\right)D'''\left(\frac{4}{3}L\right) - \frac{1}{2}C\left(\frac{2}{3}L\right)B'''\left(\frac{4}{3}L\right) \right\}$$
(22)

对于隧道-洞口滑坡而言,可通过隧道轴向的

 58
 第 59 卷第 2 期 (总第 403 期), 2022 年 4 月出版

 Vol.59, No.2 (Total No.403), Apr.2022

内力与变形寻找最不利荷载的控制截面,既要考虑 截面的承受能力,也要保证隧道结构纵向的安全稳 定。即在满足正常围岩压力下隧道的内力要求外, 还应特别关注由滑坡推力引起的隧道附加荷载与变 形,合理的设计方式是将两者综合考虑并计算最不 利荷载。在类土质滑坡中,隧道可能产生较大的受 弯矩控制的挠度,以弯矩为主要控制标准进行设计; 而岩质滑坡的地基刚度大,在外荷载作用下隧道产 生的挠度较小,在滑体位移和剪力的共同作用下发 生剪断,主要以剪力为控制参数。

5 模型试验验证分析

为验证在滑坡推力作用下洞口段隧道外荷载和 受力模式计算方法的合理性和正确性,采用模型试 验的方式来进行说明。此次试验原型设计如图10所 示,通过室内物理力学试验得到的模型参数如表2所 示。将容重相似比和几何相似比作为基准,根据原 型和模型的几何方程、物理方程、平衡方程、位移边 界条件和应力边界条件得到各参数的相似比。几何 相似比*C*_e = 10;容重、内摩擦角相似比*C*_e = *C*_y = 1; 黏聚力相似比*C*_e = 10;应力相似比*C*_e = 100。

5.1 试验模型设计

此次模型试验在模型箱内完成,模型箱尺寸为 1.4 m×0.6 m×1.1 m。滑坡滑带为弧形,坡面为40°的 单面斜坡,如图11所示。

该模型试验采用应变片及应变数据采集仪全程 监测滑坡推力作用下隧道受力变形情况,应变片位 置示意如图12所示。在隧道拱部上下位置设置一

表2 原型与模型试验材料参数

Table 2 Parameters of prototype and model test materials

名称	土层	材料	重度 γ/(kN·m ⁻³)	黏聚力 c/kPa	内摩 擦角 <i>φ</i> /(°)
原 型	滑体	黏土	17.40	18.20	20.10
	滑带	黏土	16.80	16	17.50
	基岩	砂岩		—	
	滑体	采用筛分黏土作 为本次模型试验 的滑体材料	17.40	18.20	20.10
模型	滑带	采用滑石粉、粗砂 与水的混合物作 为滑带(2 cm),滑 石粉:粗砂:水 = 2:1:7	16.80	1.60	17.50
	基岩	采用水泥土(水: 水泥:黏土=1:3: 9)分层夯实构筑, 模拟滑坡基岩			

个纵向断面,1#~7#测点间距为5 cm,为获取更加 准确的滑面附近应力情况,对位于此区域的8#~ 14#测点按照2.5 cm的间距进行布置。

5.2 试验过程

试验采用对坡体后部滑体平台逐级加载的方式 迫使坡体蠕滑。整个试验过程中共进行5次加载, 每次均加载质量为50kg的加载板。同时荷载的传 递与坡体变形之间存在着时间差,为了使坡体后部 加载的荷载缓慢传递到隧道上,每次加载完成后需 静置1h,使得坡体受力充分,然后再开始新的加载, 直至坡体发生整体滑动。

5.3 试验结果对比分析

根据测得的应变值,通过公式(σ = Eε)计算得 到模型隧道的轴向应力值(图13),基于相似比,得 到原型隧道的轴向弯矩值(图14)。

现代隧道技术 MODERN TUNNELLING TECHNOLOGY

由图13、图14可知,滑坡推力作用下的洞口段 隧道承受最大弯矩和剪力的位置并不是滑面处。隧 道受力变形模式与地梁结构吻合,弯矩从洞口端沿 滑面方向不断增大,在外荷载合力作用点(10#测点) 处达到最大(465 kN·m),之后不断减少,与理论分 析结果一致。因此,弯矩最大截面即为控制截面,衬 砌结构以此进行设计,可保证隧道的安全稳定。

结论 6

隧道-洞口滑坡平行体系的作用机理较为复 杂,但是目前在洞口段隧道设计中并未将滑坡推力 考虑为设计荷载且没有相关的计算理论。本文通过 理论推导与模型试验相结合的方式对此进行了研 究,得到以下研究结论:

(1) 洞口段隧道拱部受到滑坡推力的影响最 大,首先发生破坏,以拱部作为试验研究对象和设计 部位是合理的。

(2) 滑坡推力作用下的洞口段隧道承受最大弯 矩和剪力的位置均为距滑面1/3L处。此位置可作 为隧道衬砌结构设计的控制截面。

(3) 隧道受力变形模式与地梁结构吻合, 轴向 受外荷载和土体抗力的作用,导致隧道拱顶沿轴线 发生弯曲变形,产生连续的纵向张拉裂缝,其变形规 律与工程实例一致。

(4) 试验结果与理论分析结果较为接近,滑坡 推力作用下的洞口段隧道外荷载及受力变形模式计 算方法符合工程实际,能够为滑坡地段隧道的设计 提供参考。

参考文献

References

- [1] BARLA G, DEBERNARDI D, PERINO A. Lessons Learned from Deep-seated Landslides Activated by Tunnel Excavation[J]. Geomechanics and Tunnelling, 2015, 8(5): 394-401.
- [2] CAUSSE L, COJEAN R, FLEURISSON J A. Interaction between Tunnel and Unstable Slope-Influence of Time-dependent Behavior of a Tunnel Excavation in a Deep-seated Gravitational Slope Deformation[J]. Tunnelling and Underground Space Technology, 2015, 50: 270-281.
- [3] 周德培, 毛坚强, 张鲁新, 等. 隧道变形与坡体灾害相互关系及其预测模式[J]. 铁道学报, 2002, 24(1): 81-86. ZHOU Depei, MAO Jianqiang, ZHANG Luxin, et al. Relationship between Tunnel Deformation with Slope Disasters and Its Prediction Model[J]. Journal of the China Railway Society, 2002, 24(1): 81-86.
- [4] 张鲁新, 周德培. 蠕动滑坡成因及隧道变形机理的分析[J]. 岩石力学与工程学报, 1999, 18(2): 217-221. ZHANG Luxin, ZHOU Depei. Cause of Creep Landslide Formation and Mechanism of Deformation of Tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2): 217-221.
- [5] BANDINI A, BERRY P, BOLDINI D. Tunnelling-induced Landslides: The Val di Sambro Tunnel Case Study[J]. Engineering Geology, 2015, 196: 71-87.
- [6] 吴红刚. 隧道一滑坡体系的变形机理及控制技术研究[D]. 北京: 中国铁道科学研究院, 2012 WU Honggang. Research on Deformation Mechanism and Control Technology of Tunnel-Landslide System[D]. Beijing: China Academy of Railway Sciences, 2012.
- [7] 邢 军, 董小波, 贺晓宁. 隧道洞口滑坡工程地质问题与变形机理研究[J]. 灾害学. 2018, 33(增1): 14-17+29. XING Jun, DONG Xiaobo, HE Xiaoning. Study on Engineering Geological Problems and Deformation Mechanism of Tunnel Portal Landslide[J]. Journal of Catastrophology, 2018, 33(S1): 14-17+29.
- [8] 刘天翔, 王忠福. 隧道正交穿越深厚滑坡体的相互影响分析与应对措施[J]. 岩土力学, 2018, 39(1): 265-274+286. LIU Tianxiang, WANG Zhongfu. Analysis of Interaction when Tunnel Orthogonal Crossing Deep-seated Landslide and the Corresponding Control Measures[J]. Rock and Soil Mechanics, 2018, 39(1): 265-274+286.
- [9] 张治国, 马兵兵, 黄茂松, 等. 山区滑坡诱发既有隧道受力变形影响分析[J]. 岩土力学, 2018, 39(10): 3555-3564+3572. ZHANG Zhiguo, MA Bingbing, HUANG Maosong, et al. Influence Analyses on Force and Deformation of Existing Tunnels Induced by Landslide in Mountain Region[J]. Rock and Soil Mechanics, 2018, 39(10): 3555-3564+3572.
- [10] 陈小云. 隧道横向下穿滑坡的受力机制及安全距离研究[D]. 北京: 中国铁道科学研究院, 2017. CHEN Xiaoyun. Research on the Stress Mechanism of Tunnel Transverse Underneath Cross Landslide and Safe Distance[D]. Bei 9 第 59 卷第 2 期 (总第 403 期), 2022 年 4 月出版 Vol 59, No 2 (Total No 403), Apr 2022

60

jing: China Academy of Railway Sciences, 2017.

- [11] 吴红刚, 赵金, 李玉瑞, 等. 隧道下穿滑坡附加荷载计算方法研究[J]. 岩石力学与工程学报, 2018, 37(增2): 4375-4383.
- WU Honggang, ZHAO Jin, LI Yurui, et al. Study on Calculation Method of Additional Load of Tunnel under Landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S2): 4375–4383.
- [12] 吴红刚, 吴道勇, 马惠民, 等. 隧道-滑坡体系类型和隧道变形模式研究[J]. 岩石力学与工程学报, 2012, 31(增2): 3632-3642.
 WU Honggang, WU Daoyong, MA Huimin, et al. Research on Type of Tunnel-Landslide System and Tunnel Deformation Mode[J].
 Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3632-3642.
- [13] 牌立芳, 赵金, 吴红刚, 等. 隧道-滑坡平行体系时间效应演化及变形破坏试验研究[J]. 防灾减灾工程学报, 2020, 40(1): 100-106.

PAI Lifang, ZHAO Jin, WU Honggang, et al. Experimental Study on Time Effect Evolution and Deformation and Failure of Tunnelslide Parallel System[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(1): 100–106.

- [14] 戴自航. 抗滑桩滑坡推力和桩前滑体抗力分布规律的研究[J]. 岩石力学与工程学报, 2002, 21(4): 517-521.
 DAI Zihang. Study on Distribution Laws of Landslide-thrust and Resistance of Sliding Mass Acting on Antislide Piles[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(4): 517-521.
- [15] 马惠民, 吴红刚, 杨涛, 陆路交通隧道-滑坡体系变形机理和控制技术[M]. 北京: 科学出版社, 2020. MA Huimin, WU Honggang, YANG Tao. Deformation Mechanism and Control Technology of Land Traffic Tunnel-Landslide System[M]. Beijing: Science Press, 2020.
- [16] 国家铁路局. 铁路隧道设计规范: TB 10003—2016[S]. 北京: 中国铁道出版社, 2016. National Railway Administration of the People's Republic of China. Code for Design of Railway Tunnel: TB 10003—2016[S]. Beijing: China Railway Publishing House, 2016.
- [17] 龙驭球. 弹性地基梁的计算[M]. 北京: 人民教育出版社, 1981. LONG Yuqiu. Calculation of Elastic Foundation Beam [M]. Beijing: People's Education Press, 1981.

Study on Modes and Calculation Method of Stress and Deformation of Tunnel– Portal Landslide Parallel System

ZHAO Jin¹ WEN Lina¹ WU Honggang^{2,3,4} ZHOU Chici¹

(1. Sichuan Highway Planning, Survey, Design and Research Institute Ltd., Chengdu 610041; 2. China Railway Northwest Research Institute Co., Ltd., Lanzhou 730070; 3. China Railway Landslide Engineering Laboratory, Lanzhou 730070; 4. Provincial Laboratory of Western Environmental Geotechnical Soil and Site Remediation Technology, Lanzhou 730070)

Abstract: At present, the unified industry standard has not yet been issued in China for the design of tunnel–landslide engineering. Particularly, there is a lack of corresponding calculation theories for tunnels at the portal–landslide section. Taking the tunnel–portal landslide in the parallel system as the research subject, this paper constructs the corresponding engineering geological model by summarizing the failure characteristics of the tunnel lining in the landslide sections. Considering the residual landslide thrust as the direct cause of the tunnel deformation and failure, the additional load acting on the tunnel structure is obtained by the load transfer mechanism, and the calculation formula for external load on tunnels is derived through superimposing the additional load and the surrounding rock pressure. Using the elastic foundation beam theory, the calculation method for the tunnel internal forces under the action of the landslide thrust is derived, and thus obtaining the modes and calculation theory of stress and deformation of the tunnel–portal landslide parallel system. Finally, the rationality of the proposed method is verified through model tests, showing that the method is consistent with actual projects, and providing references for the design of tunnels in portal landslide sections.

Keywords: Tunnel-portal landslide; Characteristics of failure; Geological model; Additional load; Deformation mode

第59卷第2期(总第403期),2022年4月出版

61