Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (5) :202-211    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Research on Thermal Properties and Mechanical Behaviors of Large Shield Tunnel in Fire
(Shanghai Municipal Engineering Design Institute(Group)Co., Ltd., Shanghai 200092)
Download: PDF (7075KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Due to the closed space, tunnel fires have the characteristics of rapid temperature rise, long duration, uneven temperature distribution and so on. It is very easy to cause thermal damage to the tunnel lining, resulting in significant attenuation of structural mechanical properties, which seriously affects the safety and reliability of tunnel operation. In order to solve this problem, a three-dimensional finite element model is established based on a large diameter shield tunnel project, and the temperature field distribution, structural deformation and internal force under different fire scenarios are studied.The study concluded that: (1) Under the influence of thermal boundary conditions, the distribution of temperature field in tunnel appears obvious partition phenomenon in fire; (2) The deformation mode of the lining ring in fire is determined by load effect and thermal expansion effect, and the two factors are affected by fire scale and fire time; (3) In the area affected by the fire source, the stress on both sides of each seg? ment is large, and the inner rebar makes a great contribution to the mechanical performance of structure. However,with the development of fire, the stress distribution of segments and rebars changes significantly.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
ZHANG Tingrui
KeywordsLarge diameter   Shield tunnel   Fire   Thermo-mechanical coupling behaviors   FEM analysis     
Abstract: Due to the closed space, tunnel fires have the characteristics of rapid temperature rise, long duration, uneven temperature distribution and so on. It is very easy to cause thermal damage to the tunnel lining, resulting in significant attenuation of structural mechanical properties, which seriously affects the safety and reliability of tunnel operation. In order to solve this problem, a three-dimensional finite element model is established based on a large diameter shield tunnel project, and the temperature field distribution, structural deformation and internal force under different fire scenarios are studied.The study concluded that: (1) Under the influence of thermal boundary conditions, the distribution of temperature field in tunnel appears obvious partition phenomenon in fire; (2) The deformation mode of the lining ring in fire is determined by load effect and thermal expansion effect, and the two factors are affected by fire scale and fire time; (3) In the area affected by the fire source, the stress on both sides of each seg? ment is large, and the inner rebar makes a great contribution to the mechanical performance of structure. However,with the development of fire, the stress distribution of segments and rebars changes significantly.
KeywordsLarge diameter,   Shield tunnel,   Fire,   Thermo-mechanical coupling behaviors,   FEM analysis     
Cite this article:   
ZHANG Tingrui .Research on Thermal Properties and Mechanical Behaviors of Large Shield Tunnel in Fire[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(5): 202-211
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I5/202
 
No references of article
[1] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[2] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[3] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[4] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
[5] JIA Yonggang1 HAO Zihan1 LU Weidong1 WU Fan1 YANG Weiwei2.Mechanical Behavior of Steel Fiber Reinforced Concrete Segments with Different Joint Configurations[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 182-196
[6] TAN Xinyu1 WEI Meng1,2 LAN Lingshen1 SHANG Qiang1 ZHANG Haitao1.Experimental Test and Mechanism Study on Soil Adhesion Reduction Techniques for Mud Cake Formation on Shield Cutterheads[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 219-229
[7] LIU Pengfei1,2 ZENG Dexing2 WANG Xiao3 YANG Zhao2 LI Yu2.Experimental Evaluation and Application Study on the Shield Muck Cake Decomposition Agents[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 230-237
[8] HU Yunjin1,2,3 ZHU Mingwei GAO Huicai REN Zhihao1,2,3.null[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 50-59
[9] LI Hanyuan1,2 FENG Jin1 GUO Hongyu1 XIE Xiongyao2 ZHOU Hongsheng1 SUN Fei.Study on the Combined Bearing Mechanical Characteristics of the Double-layer Lining Structure of Subsea Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 126-138
[10] ZHANG Xinyang1,2 SHEN Yusheng1,2 CHANG Mingyu1,2 LIU Tong1,2 SUN Tianshe3, 4 HU Shuai3, 4.Study on the Control Law of Surface Deformation in Shield Tunnels in Mudstone Strata with the Clay Shock Construction Method[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 283-290
[11] ZHANG Hairong.Research on Prediction and Treatment of Screw Conveyor Fault in Long-distance Large-diameter EPB Shield Tunnelling in Composite Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 291-297
[12] YU Tongsheng1,2 GUAN Linxing3 YAN Zhiguo1,2.A Review of Researches on the Multi-disaster Scenarios and Structural Responses in Metro Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 16-26
[13] ZHU Yeting1,2 ZHU Yanfei1 WANG Zhihua1,3 WANG Shuaifeng4 WANG Hao1 MA Zhigang1.Theoretical Innovation, Method Implementation, and Engineering Verification of Shield Machine with Thrust Vector Intelligent Control[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 71-78
[14] ZENG Shiqi1,2 CHEN Xiangsheng1,2,3,4 TAN Yijun1,2 LIU Pingwei2 SU Dong1,2,3,4.Research on the Inversion Model of the Ground Load on Ultra-large Diameter Shield Tunnels Based on TL-GA-BP Algorithm[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 110-120
[15] XIAO Mingqing1 FENG Kun2 XUE Guangqiao1 WANG Yunchao2 LU Zhipeng1 CHEN Long2.Study on the Influence Factors of Additional Earth Pressure Caused by Shield Attitude Deviation in Soft Soil Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 141-150
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY