Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2024, Vol. 61 Issue (4) :161-171    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on the Deformation Law of Large-diameter Fully Prefabricated Assembled Shield Tunnels under Ground Surcharge
(1. CCCC Tunnel Engineering Co., Ltd., Beijing 100102; 2. Department of Geotechnical Engineering College of Civil Engineering,Tongji University, Shanghai 200092; 3. Collegeof Civil Engineering and Water Resources, Qinghai University, Xining 810016)
Download: PDF (6693KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract To meet structural design requirements, a certain deformation space is reserved between the mid-parti? tion wall and the segment lining in large-diameter fully prefabricated assembled shield tunnels. However, during the operation period, the segments and mid-partition wall of the tunnel may come into contact under the ground surcharge conditions, changing the stress modes of the tunnel structure and posing significant challenges to the safe operation and maintenance of the tunnel structure. In view of this, based on the Shanghai Airport Link Line Tunnel project,a three-dimensional refined finite element analysis model of a large-diameter fully prefabricated assembled shield tunnel was established to analyze the cooperative load bearing and deformation law of the segments and mid-partition wall under the ground surcharge conditions. The study shows that under the ground surcharge conditions, the segments and mid-partition wall of the large-diameter fully prefabricated assembled shield tunnel will come into contact, which will improve the stiffness and bearing capacity of the tunnel structure, but the surcharge can cause damage to the segments and internal components of the tunnel. The bottom of the plate of the arc component, the top of the column cap of the arc component, the outer side of column cap of the arc component, and the bottom of the mid-partition wall are all in a tensile state and are the vulnerable nodes. The damage and failure modes of the tunnel structure are affected by the reserved gap at the top of the mid-partition wall. To improve the bearing capacity of the tunnel, it is recommended to control the gap at the top of the mid-partition wall at about 90 mm.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
ZHU Meiheng1 CHEN Sirui2 HUANG Zhongkai2 LI Yongbo1 ZHANG Wuyu3 ZHANG Dongmei2
KeywordsLarge-diameter shield tunnel   Fully prefabricated assembly   Ground surcharge   Structural deformation   Numerical simulation     
Abstract: To meet structural design requirements, a certain deformation space is reserved between the mid-parti? tion wall and the segment lining in large-diameter fully prefabricated assembled shield tunnels. However, during the operation period, the segments and mid-partition wall of the tunnel may come into contact under the ground surcharge conditions, changing the stress modes of the tunnel structure and posing significant challenges to the safe operation and maintenance of the tunnel structure. In view of this, based on the Shanghai Airport Link Line Tunnel project,a three-dimensional refined finite element analysis model of a large-diameter fully prefabricated assembled shield tunnel was established to analyze the cooperative load bearing and deformation law of the segments and mid-partition wall under the ground surcharge conditions. The study shows that under the ground surcharge conditions, the segments and mid-partition wall of the large-diameter fully prefabricated assembled shield tunnel will come into contact, which will improve the stiffness and bearing capacity of the tunnel structure, but the surcharge can cause damage to the segments and internal components of the tunnel. The bottom of the plate of the arc component, the top of the column cap of the arc component, the outer side of column cap of the arc component, and the bottom of the mid-partition wall are all in a tensile state and are the vulnerable nodes. The damage and failure modes of the tunnel structure are affected by the reserved gap at the top of the mid-partition wall. To improve the bearing capacity of the tunnel, it is recommended to control the gap at the top of the mid-partition wall at about 90 mm.
KeywordsLarge-diameter shield tunnel,   Fully prefabricated assembly,   Ground surcharge,   Structural deformation,   Numerical simulation     
Cite this article:   
ZHU Meiheng1 CHEN Sirui2 HUANG Zhongkai2 LI Yongbo1 ZHANG Wuyu3 ZHANG Dongmei2 .Study on the Deformation Law of Large-diameter Fully Prefabricated Assembled Shield Tunnels under Ground Surcharge[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(4): 161-171
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2024/V61/I4/161
 
No references of article
[1] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[2] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[3] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[4] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[5] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
[6] JIA Yonggang1 HAO Zihan1 LU Weidong1 WU Fan1 YANG Weiwei2.Mechanical Behavior of Steel Fiber Reinforced Concrete Segments with Different Joint Configurations[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 182-196
[7] LUO Long1 ZHU Kaicheng2 HAN Yuxuan3 CAI Dong4 LIU Zheqi5 WANG Jun6.Research on Optimization of Construction Methods for Ultra-large Cross-section Tunnels: A Case Study of the Lihuashan Tunnel on the Tianfu New Area-Qionglai Expressway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 273-282
[8] HU Yunjin1,2,3 ZHU Mingwei GAO Huicai REN Zhihao1,2,3.null[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 50-59
[9] LI Yuhua1 GAO Yawei ZHONG Qiufeng1 QIN Lixuan2 LI Junjie CHENG Zhiming2 HUANG Yonghui.Study on the Blasting Effect of Tunnel Wedge Cut under Different Cut Hole Angles[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 108-116
[10] LI Hanyuan1,2 FENG Jin1 GUO Hongyu1 XIE Xiongyao2 ZHOU Hongsheng1 SUN Fei.Study on the Combined Bearing Mechanical Characteristics of the Double-layer Lining Structure of Subsea Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 126-138
[11] SU Heng1 WANG Shimin1 ZHU Xuhong2 QIN Shanliang3.Study on the Mechanical Characteristics of Shield Cutter Cutting Pile Foundation Main Reinforcement Considering Spatial Effects[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 139-150
[12] WANG Shuaishuai FU Yifan2,3 XU Yong1 SHI Jingfeng1 GUO Chun2,3.Parametric Study on Air Chamber Ventilation in Tunnelling Using Relay Fans for Airflow Distribution[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 240-248
[13] GE Zhenghui ZHENG Jianguo1 LI Xinzhi CHEN Peng3 NING Zhiwei WANG Pengcheng2.Field Measurement and Numerical Study on Deformation Behavior of Initial Supports with Different Arch Types[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 40-49
[14] LI Jing1 LUO Lusen1 ZHANG Bailin2 HU Haoran2.Study on Gas Migration and Accumulation Patterns in Tunnels after Sealing Auxiliary Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 201-211
[15] GUO Ying PENG Wenqing CHEN Shiqiang ZHANG Qiong WANG Jiawei.Calculation Method and Validation of Equivalent Length for Traffic Tunnel Ventilation Model Test[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 230-240
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY