Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2013, Vol. 50 Issue (1) :154-160    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Hyperbaric Intervention of an Earth Pressure Balance Shield in Water-Rich Sand Stratum
Beijing Uni-Construction Municipal Engineering Co., Ltd
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Based on the right running tunnel section of the Beijing Subway Line 15 that travels from Nanfaxin to Shimen station, this paper explains the reasons to use hyperbaric intervention; presents the key factors of compressed air pressure, mud membrane and operators; and describes the working principles and procedures involved. Appropriate slurry was deployed considering the sand stratum with fine and medium particles. The compressed air pressure was determined by considering earth pressure and water pressure using static earth pressure theory. A sealed mud membrane was formed at the working face and its surrounding area. The setting pressure effectively controlled the pressure in the excavation chamber, guaranteeing the stability of the working face and controlling ground settlement.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
Keywords:   
Abstract: Based on the right running tunnel section of the Beijing Subway Line 15 that travels from Nanfaxin to Shimen station, this paper explains the reasons to use hyperbaric intervention; presents the key factors of compressed air pressure, mud membrane and operators; and describes the working principles and procedures involved. Appropriate slurry was deployed considering the sand stratum with fine and medium particles. The compressed air pressure was determined by considering earth pressure and water pressure using static earth pressure theory. A sealed mud membrane was formed at the working face and its surrounding area. The setting pressure effectively controlled the pressure in the excavation chamber, guaranteeing the stability of the working face and controlling ground settlement.
Keywords:   
published: 2012-04-24
Cite this article:   
.Hyperbaric Intervention of an Earth Pressure Balance Shield in Water-Rich Sand Stratum[J]  MODERN TUNNELLING TECHNOLOGY, 2013,V50(1): 154-160
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2013/V50/I1/154
 
No references of article
[1] Li Xinyu, Zhang Dingli, Fang Qian, Song Haoran.On Water Burst Patterns in Underwater Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 24-31
[2] Shu Heng, Wu Shuyuan, Li Jian, Guo Xiaohong.Health Monitoring Design for Extra-Large Diameter Underwater Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 32-40
[3] Tuo Yongfei, Guo Xiaohong.General Design and Key Technologies of the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 1-6
[4] Lin Xin1, Shu Heng1, Zhang Yaguo2, Yang Linsong1, Li Jin1, Guo Xiaohong1.Study of the Longitudial Profile Optimization of Large-Diameter Shield Tunnels in Mixed Ground with Very High Water Pressure[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 7-14
[5] Yao Zhanhu1, Yang Zhao2, Tian Yi1, Hu Huitao1.Key Construction Technology for the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 15-23
[6] Liu Guangfeng1, Chen Fangwei2, Zhou Zhi1, Zhang Shilong3, Liu Mingqiang1.Identification of Investment Risks for River-Crossing Tunnels Based on Grey Fuzzy Multi-Attribute Group Decision Making[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 41-48
[7] Yao Zhanhu.Construction Risk Assessment for the Shield-Driven Section of the Nanjing Weisan Road River-Crossing Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 49-54
[8] Zhang Boyang1, Zhao Xiaopeng1, Zhang Yaguo2, Chen Yu1.Risk Control for Saturated Hyperbaric Intervention in Slurry Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 55-61
[9] Chen Kui1,2, Feng Huanhuan2.Adaptability Design for a Large-Diameter Shield Used in Shenzhen Metro Line 11[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 166-173
[10] Wang Daoyuan1,3,4, Wang Xichao2,4, Yuan Jinxiu3, Zhu Zhengguo4.Prediction of the Longitudinal Uplift of an Underwater Shield Tunnel During Canal Excavation[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 110-114
[11] Jin Dalong, Li Xinggao.Model Test of the Relationship between the Face Support Pressure and Ground Surface Deformation of a Shield-Driven Tunnel in Sand Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 44-51
[12] Lai Jinxing1,5, Qiu Junling1,5, Pan Yunpeng2, Cao Xiaojun3, Liu Chi1,4, Fan Haobo1,5.Comprehensive Monitoring and Analysis of Segment Cracking in Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 186-191
[13] LIAO Hong-Yan.Treatment Scheme for Hard Rock Encountered by the Shield-Driven Tunnel in Mix Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2012,49(4): 184-191
[14] HUANG De-Zhong.Research of Soil Improvement during Super Large Diameter Earth Pressure Balanced Shield [J]. MODERN TUNNELLING TECHNOLOGY, 2011,48(4): 65-71
[15] CAO Zheng-Xi.Discussion on EPB Shield Tunneling in Liquifying Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2011,48(3): 123-127
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY