MMS-YOLO:多尺度增强与自适应优化的隧道火灾精准检测方法

MMS-YOLO: a Multi-scale Enhanced and Adaptively Optimized Method for Precise Tunnel Fire Detection

  • 摘要: 针对传统火灾检测方法精度低、视频图像数据不足的问题,提出一种基于改进YOLOv8的隧道火灾检测模型MMS-YOLO。该模型在YOLOv8主干网络的深层特征层插入多尺度空洞卷积(Multi-scale Dilated Convolution,MDC),改善对早期火灾和复杂场景的检测性能;引入中值增强空间通道注意力模块(Median-enhanced Spatialand Channel Attention Block, MECS),增强全局信息捕捉和噪声鲁棒性;采用空间自适应特征调制网络(Spatial Adaptive Feature Modulation Network,SAFMN),优化多尺度目标检测中的特征表达和上下文建模。相较于传统模型,该模型平均精度(mAP50-95)提高2.2%,精度提升3.39%,召回率提升4.85%,有效提高了隧道火灾检测的精度与鲁棒性,具备良好的工程应用潜力。

     

    Abstract: To address the problems of low accuracy and insufficient video image data in traditional fire detection methods, a tunnel fire detection model MMS-YOLO based on improved YOLOv8 is proposed. In the backbone network of YOLOv8, the model inserts Multi-scale Dilated Convolution (MDC) into the deep feature layers to improve the detection performance for early fires and complex scenarios; introduces a Median-enhanced Spatial and Channel Attention Block (MECS) to enhance global information capture and noise robustness; and adopts a Spatial Adaptive Feature Modulation Network (SAFMN) to optimize feature expression and context modeling in multi-scale target detection. Compared with traditional models, this model increases the mean average precision (mAP50-95) by 2.2%, precision by 3.39%, and recall by 4.85%, effectively improving the accuracy and robustness of tunnel fire detection and possessing good engineering application potential.

     

/

返回文章
返回