[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2025, Vol. 62 Issue (2) :121-131    DOI:
绿色智能建造 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
基于Bootstrap-COA-BiGRU模型的TBM掘进步稳定段掘进参数区间预测
(1.北京工业大学 城市与工程安全减灾教育部重点实验室,北京 100124; 2.新疆水利发展投资(集团)有限公司,乌鲁木齐 830000)
Interval Prediction of TBM Parameters in Stable Excavation Sections Based on Bootstrap-COA-BiGRU Model
(1.Key Laboratory of Urban Disaster Prevention and Mitigation of Ministry of Education, Beijing University of Technology,Beijing 100124; 2.Xinjiang Water Conservancy Development Investment(Group) Co.,Ltd., Urumqi 830000)
Download: PDF (6563KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 针对现有TBM掘进步稳定段掘进参数点预测模型忽略预测过程中的不确定性误差,且无法描述预测结果的可信度问题,提出一种基于Bootstrap-COA-BiGRU 算法的TBM掘进步稳定段掘进参数区间预测模型。首先,采用COA算法优化BiGRU神经网络的超参数,使得模型能够更好地自主学习TBM掘进上升段数据在时间和特征维度上蕴含的岩机相互作用非线性关系,有效提升模型的预测精度。其次,通过分析点预测模型的预测结果,引入区间预测方法,量化表征TBM掘进步稳定段掘进参数预测过程中模型的不确定性和数据中的随机不确定性,获得高质量的稳定段掘进参数预测区间。最后,将该模型应用于新疆YEGS工程,开展Ⅱ~Ⅳ类围岩条件下的TBM掘进参数区间预测,并将预测结果与BP模型、GRU模型、BiGRU模型和COA-GRU模型进行对比,验证所建模型的优越性和方法的实用性,推动TBM智能化辅助施工的发展。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
张 广1 龚秋明1 谢兴飞1 裴成元2 尚 层2
关键词Bootstrap-COA-BiGRU模型   TBM掘进步   掘进参数区间预测   双向门控循环单元   长鼻浣熊优化算法     
Abstract: Existing TBM parameter point prediction models for stable excavation sections ignore the uncertainty errors during the prediction process and fail to describe the confidence level of the prediction results. This paper proposes a TBM parameter interval prediction model for stable excavation sections based on the Bootstrap-COA-BiGRU algorithm. First, the COA algorithm is used to optimize the hyperparameters of the BiGRU neural network, allowing the model to better autonomously learn the complex nonlinear relationship of the rock-machine interaction in the time and feature dimensions of the TBM data in ascending phase , effectively improving the model's prediction accuracy.Secondly, by analyzing the results of point prediction models, the interval prediction method is introduced to quantify the uncertainty of the model and random uncertainty in the data, obtaining high-quality parameter prediction intervals in TBM stable excavation phase. Finally, the proposed model is applied to the Xinjiang YEGS project for interval prediction of TBM parameters under class Ⅱ~Ⅳ surrounding rock conditions, and the results are compared with BP, GRU, BiGRU, and COA-GRU models to verify the superiority and practicality of the proposed model, promoting the development of TBM intelligent construction.
KeywordsBootstrap-COA-BiGRU model,   TBM exavation progress,   Tunnelling parameter interval prediction,   Bi? directional gated recurrent unit (BiGRU),   Coati optimization algorithm (COA)     
作者简介: 张 广(1998-),男,博士研究生,主要从事TBM智能化施工方面的研究工作,E-mail: zhangguang@emails.bjut.edu.cn. 通讯作者:龚秋明(1969-),男,博士,教授,博士生导师,主要从事TBM智能化施工方面的研究与教学工作,E-mail:gongqiuming@bjut.edu.cn.
引用本文:   
张 广1 龚秋明1 谢兴飞1 裴成元2 尚 层2 .基于Bootstrap-COA-BiGRU模型的TBM掘进步稳定段掘进参数区间预测[J]  现代隧道技术, 2025,V62(2): 121-131
ZHANG Guang1 GONG Qiuming1 XIE Xingfei1 PEI Chengyuan2 SHANG Ceng2 .Interval Prediction of TBM Parameters in Stable Excavation Sections Based on Bootstrap-COA-BiGRU Model[J]  MODERN TUNNELLING TECHNOLOGY, 2025,V62(2): 121-131
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2025/V62/I2/121
 
没有本文参考文献
没有找到本文相关文献
Copyright 2010 by 现代隧道技术