[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2022, Vol. 59 Issue (1) :80-86    DOI:
绿色智能建造 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
具有无序排列管片环结构的地铁盾构隧道数字模型智能重建
(南昌大学建筑工程学院工程力学系,南昌 330031)
Intelligent Reconstruction of the Digital Model of Metro Shield Tunnels with Disordered Erected Segment Ring Structure
(Faculty of Engineering Mechanics, School of Civil Engineering and Architecture, Nanchang University, Nanchang 330031)
Download: PDF (4084KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 运营地铁隧道的管理、健康监测及维护正逐渐趋向于数字化、智能化;但常因地铁盾构隧道管理和检测单位缺少隧道数字模型,限制了地铁隧道智能维护和管理系统的应用和发展。文章针对地铁盾构隧道中无序排列的管片环结构,提出了一种基于深度学习和机器视觉的地铁盾构隧道数字模型智能重建方法,利用检测车获取的隧道衬砌内表面高清图片,对管片特征物(螺栓孔)进行智能识别与自动分类,再根据螺栓孔群的分布特点自动推断隧道管片环的排版规律,从而结合隧道实际线路实现隧道数字模型快速重建。某地铁隧道的实例应用结果表明,该方法适用于管片无规律性错缝拼装的情况,能以100%的准确率实现地铁盾构隧道数字模型的智能重建。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
张 纯 周宇轩 李登鹏
关键词地铁盾构隧道   结构智能识别   深度学习   数字模型重建   机器视觉     
Abstract: The management, health monitoring and maintenance of operational metro tunnels have been gradually becoming digital and intelligent. However, the lack of digital tunnel models often limits the application and development of intelligent maintenance and management systems for metro shield tunnel management and inspection organizations. This paper proposes an intelligent reconstruction method of the digital model of disordered erected segment ring structure in metro shield tunnels based on deep learning and machine vision, uses high-definition pictures of the inner surface of the tunnel lining obtained by inspection vehicles to intelligently identify and automatically classify the tunnel segment features (bolt holes), and then automatically infers the layout pattern of the tunnel segment rings according to the distribution characteristics of the bolt hole groups, thus achieving rapid reconstruction of the tunnel digital model by combining with the actual tunnel alignment. The application case in a certain metro tunnel shows that the proposed method is applicable to shield tunnels with irregularly and staggered erected segments, and can achieve the intelligent reconstruction of the digital model of the metro shield tunnel with 100% accuracy.
KeywordsMetro shield tunnel,   Intelligent identification of structure,   Deep learning,   Digital model reconstruction,   Machine vision     
基金资助:江西省自然科学基金项目(20202BAB204029);江西省学位与研究生教育教学改革项目(JXYJG-2019-018).
作者简介: 张 纯(1976-),男,博士,教授,博士生导师,主要从事隧道及地下工程方面的教学与科研工作,E-mail: zhangchun@ncu.edu.cn.
引用本文:   
张 纯 周宇轩 李登鹏 .具有无序排列管片环结构的地铁盾构隧道数字模型智能重建[J]  现代隧道技术, 2022,V59(1): 80-86
ZHANG Chun ZHOU Yuxuan LI Dengpeng .Intelligent Reconstruction of the Digital Model of Metro Shield Tunnels with Disordered Erected Segment Ring Structure[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(1): 80-86
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2022/V59/I1/80
 
没有本文参考文献
[1] 罗震涵1 廖少明1 赵 帅1 孙九春2.基于TPE-XGBoost-GRU的盾构姿态混合预测模型及其应用[J]. 现代隧道技术, 2025,62(3): 88-99
[2] 李久源1 高发勇1 马永涛1 唐明阳2 傅 康3 李雨恒2 薛翊国2.基于岩机参数交互机制的TBM隧道围岩识别及掘进速度预测研究[J]. 现代隧道技术, 2025,62(3): 75-87
[3] 于同生1,2 官林星3 闫治国1,2.地铁盾构隧道多灾害场景及结构多灾害响应研究综述[J]. 现代隧道技术, 2025,62(2): 16-26
[4] 张美宁1,2 宋战平1,2,3 岳 波4 李 旭1,2,3 赵祎睿2 陶 磊5.基于实时图像与超前地质信息的隧道围岩快速分级模型构建及应用研究[J]. 现代隧道技术, 2025,62(2): 87-97
[5] 高福忠.基于特征降维和深度学习方法的城市隧道爆破振动参数预测研究[J]. 现代隧道技术, 2024,61(6): 100-110
[6] 旷华江1 刘光辉1 李大林1 徐 骁1 杨卫康1 杨廷发1 邓兴兴1张运波2 田茂豪3.基于Cascade Mask Region-Convolutional Neural Network-ResNeSt的隧道光面爆破炮孔残痕智能识别方法[J]. 现代隧道技术, 2024,61(5): 99-110
[7] 韩凤岩1,2 李慧臻3 杨少君3 甘 帆3 肖勇卓1.基于FC-ResNet网络的隧道衬砌裂缝像素级分割方法[J]. 现代隧道技术, 2024,61(5): 111-119
[8] 蒋 源 王海林 陈 兆.基于深度学习的隧道不良地质体超前预报图像智能预测算法[J]. 现代隧道技术, 2024,61(3): 148-156
[9] 王 锋.基于SSA-LSTM模型的软岩隧道变形特征智能预测及应用研究[J]. 现代隧道技术, 2024,61(1): 56-66
[10] 郝翊杰1 李 刚2 沈 丹3 邓有为1 刘怡阳1.基于改进YOLOv5的隧道围岩沉降自动识别与实时测量技术研究[J]. 现代隧道技术, 2023,60(5): 58-66
[11] 吴 刚 1 罗 炜 2,3 王小龙 1 朱晶晶 1 贾 非 2,3 薛亚东 2,3.基于深度学习的盾构隧道衬砌表观病害检测模型研究[J]. 现代隧道技术, 2023,60(4): 67-75
[12] 雷明锋 1 张运波 1 秦桂芳 2 石渊博 1 龚琛杰 1, 3 张 勇 4 高洪飞 5.山岭隧道爆破效果神经网络评价模型及爆破参数优化决策方法研究[J]. 现代隧道技术, 2023,60(2): 54-61
[13] 贺蕾铭 1 邓非凡 2,3 贾 鹏 2,3.在建盾构隧道突发管片破损病害成因分析及治理措施研究[J]. 现代隧道技术, 2022,59(1): 225-231
[14] 秦尚友 1 陈佳耀 2 张东明 2 杨同军 1 黄宏伟 2 赵 帅 2.基于深度学习的隧道工作面岩石结构自动化判别[J]. 现代隧道技术, 2021,58(4): 29-36
[15] 李 港 1 李晓军 1 杨文翔 2 韩 冬 1.基于深度学习的TBM掘进参数预测研究[J]. 现代隧道技术, 2020,57(5): 154-159
Copyright 2010 by 现代隧道技术