[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (5) :111-119    DOI:
绿色智能建造 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
基于FC-ResNet网络的隧道衬砌裂缝像素级分割方法
(1.中南大学土木工程学院,长沙 410075;2.中国中铁股份有限公司,北京 100039; 3. 中铁交通投资集团有限公司,南宁 530219)
Pixel-Level Segmentation Method for Tunnel Lining Cracks Based on FC-ResNet Network
(1. School of Civil Engineering, Central South University, Changsha 410075; 2. China Railway Group Limited, Beijing 100039; 3. China Railway Communications Investment Croup Co., Ltd, Nanning 530219)
Download: PDF (4492KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为提升隧道定期巡检中裂缝的检测精度和检测效率,以ResNet作为主干特征提取网络,借鉴U-net“编码-解码”和优化网络结构特征层等方法,提出一种用于隧道衬砌裂缝检测的FC-ResNet算法,实现对衬砌裂缝的像素级分割。为验证本算法的有效性和可靠性,采用CrackSegNet和U-net进行对比验证。结果表明:该算法的检测性能表现优异,测试集的像素准确率、平均交并比及F1-score分别为99.2%、87.4%、0.87,均优于CrackSegNet和U-net,且该算法的单张图片检测时间为122 ms,优于CrackSegNet,与模型结构简洁的U-net基本持平。基于提出FCResNet算法开发隧道衬砌裂缝智能识别系统,实现对实际隧道工程衬砌裂缝准确、快速的智能化识别。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
韩凤岩1
2 李慧臻3 杨少君3 甘 帆3 肖勇卓1
关键词隧道工程   裂缝分割   深度学习   全卷积网络   残差网络     
Abstract: To improve the detection accuracy and efficiency of cracks during regular tunnel inspections, this study proposes an FC-ResNet algorithm for tunnel lining crack detection by using ResNet as the backbone feature extraction network, incorporating U-net's "encoder-decoder" structure and optimizing network feature layers. The algorithm achieves pixel-level segmentation of lining cracks. To verify its effectiveness and reliability, a comparative validation was conducted using CrackSegNet and U-net. The results show that the proposed algorithm demonstrates excellent detection performance, with a pixel accuracy, mean Intersection over Union (mIoU), and F1-score of 99.2%, 87.4%, and 0.87, respectively, on the test set. These results are superior to those of CrackSegNet and U-net,and the detection time per image is 122 ms, better than CrackSegNet and comparable to the simpler U-net. Based on the FC-ResNet algorithm, an intelligent recognition system for tunnel lining cracks was developed, enabling accurate and fast intelligent recognition of cracks in actual tunnel engineering linings.
KeywordsTunnel engineering,   Crack segmentation,   Deep learning,   Fully convolutional network,   Residual network     
基金资助:国家自然科学基金(U1734208).
作者简介: 韩凤岩(1981-),男,高级政工师,主要从事技术管理、项目管理、企业管理工作,E-mail: hanfengyan@csu.edu.cn. 通讯作者:肖勇卓(1994-),男,博士研究生,主要从事钻爆法隧道智能建造研究,E-mail: 845314967@qq.com.
引用本文:   
韩凤岩1, 2 李慧臻3 杨少君3 甘 帆3 肖勇卓1 .基于FC-ResNet网络的隧道衬砌裂缝像素级分割方法[J]  现代隧道技术, 2024,V61(5): 111-119
HAN Fengyan1, 2 LI Huizhen3 YANG Shaojun3 GAN Fan3 XIAO Yongzhuo1 .Pixel-Level Segmentation Method for Tunnel Lining Cracks Based on FC-ResNet Network[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(5): 111-119
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I5/111
 
没有本文参考文献
[1] 王 升1,2,3,4 韦 芹1,2 李利平3.隧道突水突泥灾变机理研究现状及发展趋势[J]. 现代隧道技术, 2025,62(4): 15-25
[2] 邹育麟1, 2 刘 静1 汪 波2 陈子全2 谢作栋2 古 浩3 王楷越2.四川沿江高速公路隧道涌水突泥灾害成因分析及防治对策研究[J]. 现代隧道技术, 2025,62(3): 259-269
[3] 罗震涵1 廖少明1 赵 帅1 孙九春2.基于TPE-XGBoost-GRU的盾构姿态混合预测模型及其应用[J]. 现代隧道技术, 2025,62(3): 88-99
[4] 秦天戈1, 2 吴 立2 陈 倩1 夏 振1 刘诗雅1, 2 蔡 新1.钻爆法隧道智能建造体系研究现状与发展趋势[J]. 现代隧道技术, 2025,62(3): 1-10
[5] 李久源1 高发勇1 马永涛1 唐明阳2 傅 康3 李雨恒2 薛翊国2.基于岩机参数交互机制的TBM隧道围岩识别及掘进速度预测研究[J]. 现代隧道技术, 2025,62(3): 75-87
[6] 王敬勇1,2 王 平2 杨 锦2 吉 锋3.基于物理模型试验的碳质千枚岩隧道支护结构优化研究[J]. 现代隧道技术, 2025,62(3): 160-169
[7] 王帅帅1 傅一帆2,3 徐 勇1 史经峰1 郭 春2,3.通过接力风机进行风量分配的隧道施工风仓式通风参数研究[J]. 现代隧道技术, 2025,62(3): 240-248
[8] 张美宁1,2 宋战平1,2,3 岳 波4 李 旭1,2,3 赵祎睿2 陶 磊5.基于实时图像与超前地质信息的隧道围岩快速分级模型构建及应用研究[J]. 现代隧道技术, 2025,62(2): 87-97
[9] 王浩鱇1,2 申玉生1,2 潘笑海1,2 常铭宇1,2 张昕阳1,2 粟 威3.强震区穿越多破裂面破碎带隧道动力特性试验研究[J]. 现代隧道技术, 2025,62(1): 212-220
[10] 杨存斌1,2 任 洋1,2 吴岳华1,2 何万超1,2 李天斌1,2.基于M-LSTM法的隧道围岩地质信息动态智能预测研究[J]. 现代隧道技术, 2025,62(1): 74-82
[11] 王立川1,2 葛立辉3 王海彦2 孔 超4 李庆斌1 王云涛3 刘玉飞1.隧道二次衬砌拱部脱空纵向同步灌浆施工方法[J]. 现代隧道技术, 2024,61(6): 269-277
[12] 张成友1 汪 波1 杜泽昊1 高筠涵1 谭力豪2.不同锚杆支护体系防岩爆适宜性分析与锚杆参数优化研究[J]. 现代隧道技术, 2024,61(6): 64-73
[13] 张昕阳1,2 申玉生1,2 常铭宇1,2 王浩鱇1,2 潘笑海1,2 王岩岩1,2.基于GA-BP神经网络的隧道围岩相似材料配合比设计[J]. 现代隧道技术, 2024,61(6): 82-91
[14] 惠 强1 高 峰1,2 谭绪凯1 尤冬梅1.基于分层位错理论的穿越活动断层隧道结构损伤特征研究[J]. 现代隧道技术, 2024,61(6): 35-44
[15] 高福忠.基于特征降维和深度学习方法的城市隧道爆破振动参数预测研究[J]. 现代隧道技术, 2024,61(6): 100-110
Copyright 2010 by 现代隧道技术