[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2023, Vol. 60 Issue (4) :76-85    DOI:
绿色智能建造 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
基于U-Net++网络的隧道排水孔堵塞检测方法
(兰州交通大学土木工程学院,兰州 730070)
Detection Method for Blockage of Tunnel Drainage Holes Based on U-Net++ Network
(School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070)
Download: PDF (5409KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为提高传统基于图像检测的隧道排水孔堵塞识别效率,利用U-Net++神经网络模型的人工智能语义分割方法对隧道排水孔堵塞图像进行处理,并引入淤堵程度评估指标,对不同淤堵程度的排水孔进行准确分类。结果表明,所提方法的损失曲线显示出较好的收敛趋势,同时训练集和验证集上的准确率均呈现出稳定提升的趋势,在准确率、召回率和F1分数等指标上优于其他常用图像分割方法,分别达到96%、95%和95%。模型在IoU和Dice系数方面同样表现优异,分别达到了91%和95%。此外,模型对光照变化以及不同噪声环境都具有一定的适应能力,在不同场景下依然表现出较好的性能。所提出的基于U-Net++神经网络的智能识别方法在准确性、鲁棒性和适应性方面均表现出较高的水平,为隧道排水孔堵塞检测任务提供了一种有效的解决方案。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
王耀东 杜耀辉 高 岳
关键词隧道排水孔堵塞   图像识别   卷积神经网络   语义分割   U-Net++网络模型     
Abstract: In order to improve the recognition efficiency of tunnel drainage hole images based on traditional image detection, the artificial intelligence semantic segmentation method of the U-Net++ neural network model is used to process the blockage images of tunnel drainage holes, and the evaluation indicators of siltation degree are introduced to accurately classify drainage holes with different degrees of siltation. The results show that the loss curve of the proposed method shows a good convergence trend, and the accuracy on both the training and validation sets shows a stable improvement trend. It outperforms other commonly used image segmentation methods in terms of accuracy, recall rate and F1 score, reaching 96%, 95% and 95%, respectively. This model also performs well in terms of IoU and Dice coefficients, reaching 91% and 95% respectively. Furthermore, the model has certain adaptability to changes in lighting and different noise environments, and still performs well in different scenarios. The proposed intelligent recognition method based on U-Net++ neural network has shown high levels in terms of accuracy, robustness and adaptability, providing an effective solution for the detection of blockage of tunnel drainage holes.
KeywordsBlockage of tunnel drainage holes,   Image recognition,   Convolutional neural network,   Semantic segmen? tation,   U-Net++network model     
基金资助:甘肃省重点研发计划-工业类(21YF1GA381).
作者简介: 王耀东(1997-),男,硕士研究生,主要从事隧道方面的研究工作,E-mail: 123515920@qq.com. 通讯作者:杜耀辉(1981-),男,博士,副教授,主要从事岩土与隧道工程方面的教学与研究工作,E-mail: 360489245@qq.com.
引用本文:   
王耀东 杜耀辉 高 岳 .基于U-Net++网络的隧道排水孔堵塞检测方法[J]  现代隧道技术, 2023,V60(4): 76-85
WANG Yaodong DU Yaohui GAO Yue .Detection Method for Blockage of Tunnel Drainage Holes Based on U-Net++ Network[J]  MODERN TUNNELLING TECHNOLOGY, 2023,V60(4): 76-85
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2023/V60/I4/76
 
没有本文参考文献
[1] 杨 颖1 倪 凯1 葛 林2 张明飞3 王晓睿4.弱光条件下基于改进Unet模型的隧道渗水病害图像分割[J]. 现代隧道技术, 2025,62(4): 100-110
[2] 李占甫1 张 雨2 汪 俊1 吕艳云2,3 芮 易2,3,4.基于深度学习的空间变异土体中隧道水平收敛安全系数计算[J]. 现代隧道技术, 2024,61(5): 88-98
[3] 杨 钊1,2 高如超1,2 姬付全1,2 陈培帅1,2 李明鹏3.基于SegFormer模型的盾构隧道管片间缝高精度测量[J]. 现代隧道技术, 2023,60(6): 175-182
[4] 雷明锋 1 张运波 1 秦桂芳 2 石渊博 1 龚琛杰 1, 3 张 勇 4 高洪飞 5.山岭隧道爆破效果神经网络评价模型及爆破参数优化决策方法研究[J]. 现代隧道技术, 2023,60(2): 54-61
[5] 罗 虎 1 Miller Mark1 张 睿 2 方 勇 1.基于计算机视觉技术和深度学习的隧道掌子面岩体裂隙自动识别方法研究[J]. 现代隧道技术, 2023,60(1): 56-65
[6] 陈莹莹 1,2 刘新根 1,2 黄永亮 3,4 李明东 1.基于神经网络与边缘修正的隧道衬砌裂缝识别[J]. 现代隧道技术, 2022,59(6): 24-34
[7] 刘文建 1 张国才 2 吕建兵 3 刘 锋 3 吴维俊 3 陈贡发 3.排水孔结晶淤堵图像的语义分割识别技术及APP研究[J]. 现代隧道技术, 2022,59(4): 100-107
[8] 秦尚友 1 陈佳耀 2 张东明 2 杨同军 1 黄宏伟 2 赵 帅 2.基于深度学习的隧道工作面岩石结构自动化判别[J]. 现代隧道技术, 2021,58(4): 29-36
[9] 李鹏举 1 郑方坤 2 吕建兵 3 吴维俊 3 刘 锋 3 陈贡发 3.基于大数据迁移学习的灰岩地区排水孔淤堵自动识别技术[J]. 现代隧道技术, 2021,58(4): 37-47
[10] 江 桁 1 刘学增 2 朱合华 1.基于隧道快速检测车数据的公路隧道衬砌开裂识别模型研究[J]. 现代隧道技术, 2020,57(5): 61-65
Copyright 2010 by 现代隧道技术