[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2025, Vol. 62 Issue (2) :191-200    DOI:
数值分析与计算 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
多洞空间-混凝土水化热下盾构组装洞通风降温效果研究
null
(中铁十四局集团第四工程有限公司,济南 250000)
Study on Ventilation and Cooling Effect in Shield Assembly Caverns under Concrete Hydration Heat and Multi-tunnel Coditions
null
(China Railway 14th Bureau Group Fourth Engineering Co., Ltd., Jinan 250000)
Download: PDF (7404KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 依托重庆—黔江高速铁路长江隧道,开展多洞空间下盾构组装洞大体积混凝土水化热高温气体分布特征及通风降温效果研究。基于现场测试和数值模拟方法,建立三维流-热耦合模型,研究各开挖阶段水化热温度、送风位置和送风速度对洞内气温、风速瞬态变化规律的影响。研究结果表明:复杂空间下,洞室混凝土水化热聚集,导致洞内气温较高。组装洞上部开挖阶段空气流径较为单一,自下而上;下部开挖阶段低风速下气流主要向上运动,高风速下则呈四周溢流状态。通风可有效降低洞室气温,降幅随风速增大而增大,降温率随风速增大而递减。上部开挖时,气温降幅随送风位置的深入而增大,40 ℃、50 ℃和70 ℃下,降温效率可提高9.3%~14.6%;下部开挖时,送风口设置在组装洞与正线交叉口处更有利于排热,可提高降温效率2.2%~15.5%。在水化热为40 ℃时,凭借机械通风优化送风位置,气温可降低至28 ℃,上部开挖所需风速和送风位置为1.8 m/s(位置B),下部开挖为4.4m/s(位置C)和9.8 m/s(位置D)。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
蒋 威
关键词多洞空间   盾构组装洞   混凝土水化热   隧道热害   通风降温     
Abstract: Based on the Yangtze River Tunnel on Chongqing-Qianjiang High-Speed Railway, a study is conducted on the distribution characteristics of high-temperature gases caused by the hydration heat of mass concrete in the shield assembly cavern under multi-tunnel condition, as well as the effects of ventilation and cooling. A 3D fluidthermal coupled model is established based on field testing and numerical simulation methods to study the influence of hydration heat temperature, air supply position, and air supply speed on the transient temperature and wind speed variation in the tunnel during various excavation stages. The results show that in complex space conditions, the aggregation of concrete hydration heat leads to higher air temperatures inside the tunnel. During the upper excavation stage, the airflow is relatively simple and flows from bottom to top. In the lower excavation stage, under low wind speeds, the airflow mainly moves upwards, while under high wind speeds, the airflow spreads out in all directions.Ventilation can effectively reduce the air temperature inside the tunnel, but its effect is limited at specific wind speeds. The cooling amplitude increases proportionally with the wind speed, but the cooling rate decreases inversely with the wind speed. During upper excavation stage, the air temperature drop increases with the air supply position's depth; under 40 °C, 50 °C, and 70 °C, the cooling efficiency can be improved by 9.3% to 14.6%. During the lower excavation stage, setting the air supply outlet at the intersection of the assembly cavern and the main tunnel is more conducive to heat removal and can increase the cooling efficiency by 2.2% to 15.5%. When the hydration heat is 40 °C, the air temperature can be reduced to 28 °C through mechanical ventilation and optimized air supply outlet positions. The required wind speed and air supply outlet position for the upper excavation are 1.8 m/s (Position B),and for the lower excavation, they are 4.4 m/s (Position C) and 9.8 m/s (Position D).
KeywordsMulti-tunnel space,   Shield assembly cavern,   Concrete hydration heat,   Tunnel heat hazard,   Ventilation and cooling     
基金资助:国家自然科学基金(52078090);重庆市教委科学技术研究项目(KJZD-K20240390).
作者简介: 蒋 威(1986-),男,高级工程师,主要从事铁路建设方面的工作,E-mail:285856247@qq.com.
引用本文:   
蒋 威 .多洞空间-混凝土水化热下盾构组装洞通风降温效果研究[J]  现代隧道技术, 2025,V62(2): 191-200
JIANG Wei .Study on Ventilation and Cooling Effect in Shield Assembly Caverns under Concrete Hydration Heat and Multi-tunnel Coditions[J]  MODERN TUNNELLING TECHNOLOGY, 2025,V62(2): 191-200
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2025/V62/I2/191
 
没有本文参考文献
Copyright 2010 by 现代隧道技术