Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (1) :55-68    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
General Construction Technology Scheme of Tianshan Shengli Tunnel on Urumqi-Yuli Expressway
(1. CCCC Second Highway Engineering Bureau Co., Ltd., Xi′an 710065; 2. CCCC Second Highway Engineering Bureau Dongmeng Engineering Co., Ltd., Xi′an 710000)
Download: PDF (8727KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract With a total length of about 22 km, Tianshan Shengli Tunnel on Urumqi-Yuli Expressway is currently the longest expressway tunnel under construction in the world. It adopts the construction scheme of "3 tunnels (2 D&B main tunnels and 1 TBM-driven middle pilot tunnel) + 4 shafts", which is characterized by great construction difficulty and high technical standard requirements. The tunnel construction is faced with technical challenges such as TBM passing through large fault fracture zones, long-distance construction ventilation in three tunnels, deep and large shaft construction and logistics organization in two-main tunnel construction assisted by middle pilot tunnel.In the parallel three-tunnel method design of Tianshan Shengli Tunnel, the TBM-driven middle pilot tunnel can not only play the role of advanced pilot tunnel, but also assist the construction of the two main tunnels and speed up the construction progress. For the middle pilot tunnel, the TBM excavation diameter is 8.4 m, and the initial support is designed as 100% force-bearing capacity in construction period, which can meet the requirements for two-way material transportation, ventilation and belt mucking in the pilot tunnel. Vault suspension scheme is adopted for the continuous belt conveyor, which can reduce the impact on the material flow organization in the cross passages. Multifunctional service vehicles (MSVs) independently developed by CCCC Group are used for the transportation of TBM materials and prefabricated inverted arch blocks, which can realize double-headed driving. TBM will pass through two large fault fracture zones F6 and F7. According to the stability of the surrounding rock at the tunnel face, the targeted treatment measures would be adopted. If necessary, the scheme of "steel segment + extruded concrete" shall be used for the initial support. In case of serious machine jamming or rock collapse, the heading expansion excavation method or bypass heading method shall be used. Tianshan Shengli Tunnel adopts phased forced ventilation option, and the ventilation mode is designed in stages with the change of tunnel construction stage. The fans and air pipes used are imported ones, and a ventilation management team is set up to strengthen ventilation management and ensure ventilation quality. Highly mechanized construction is used for the two D&B main tunnels, the application of equipment such as three-arm rock drilling jumbo and wet shotcrete machine is promoted, so as to reduce the number of workers and labor intensity, and improve work efficiency. The deep shafts of Tianshan Shengli Tunnel are constructed by short-section excavation and lining mixed operation method, and the initial support is lined by formwork pouring concrete, so as to realize safe and rapid excavation. According to the research results, the construction technology scheme for Tianshan Shengli Tunnel can meet the needs of tunnel construction. The research results can be directly used to guide the construction of Tianshan Shengli Tunnel, and provide reference for the construction of extra long highway tunnels in high-altitude areas.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
WANG Shuaishuai1 MAO Jinbo2 ZHANG Binbin2 Li Yalong2 ZHAO Honggang2
KeywordsTianshan Shengli Tunnel   Expressway   Extra long tunnel   Three-tunnel method   Middle pilot tunnel   TBM   Shaft     
Abstract: With a total length of about 22 km, Tianshan Shengli Tunnel on Urumqi-Yuli Expressway is currently the longest expressway tunnel under construction in the world. It adopts the construction scheme of "3 tunnels (2 D&B main tunnels and 1 TBM-driven middle pilot tunnel) + 4 shafts", which is characterized by great construction difficulty and high technical standard requirements. The tunnel construction is faced with technical challenges such as TBM passing through large fault fracture zones, long-distance construction ventilation in three tunnels, deep and large shaft construction and logistics organization in two-main tunnel construction assisted by middle pilot tunnel.In the parallel three-tunnel method design of Tianshan Shengli Tunnel, the TBM-driven middle pilot tunnel can not only play the role of advanced pilot tunnel, but also assist the construction of the two main tunnels and speed up the construction progress. For the middle pilot tunnel, the TBM excavation diameter is 8.4 m, and the initial support is designed as 100% force-bearing capacity in construction period, which can meet the requirements for two-way material transportation, ventilation and belt mucking in the pilot tunnel. Vault suspension scheme is adopted for the continuous belt conveyor, which can reduce the impact on the material flow organization in the cross passages. Multifunctional service vehicles (MSVs) independently developed by CCCC Group are used for the transportation of TBM materials and prefabricated inverted arch blocks, which can realize double-headed driving. TBM will pass through two large fault fracture zones F6 and F7. According to the stability of the surrounding rock at the tunnel face, the targeted treatment measures would be adopted. If necessary, the scheme of "steel segment + extruded concrete" shall be used for the initial support. In case of serious machine jamming or rock collapse, the heading expansion excavation method or bypass heading method shall be used. Tianshan Shengli Tunnel adopts phased forced ventilation option, and the ventilation mode is designed in stages with the change of tunnel construction stage. The fans and air pipes used are imported ones, and a ventilation management team is set up to strengthen ventilation management and ensure ventilation quality. Highly mechanized construction is used for the two D&B main tunnels, the application of equipment such as three-arm rock drilling jumbo and wet shotcrete machine is promoted, so as to reduce the number of workers and labor intensity, and improve work efficiency. The deep shafts of Tianshan Shengli Tunnel are constructed by short-section excavation and lining mixed operation method, and the initial support is lined by formwork pouring concrete, so as to realize safe and rapid excavation. According to the research results, the construction technology scheme for Tianshan Shengli Tunnel can meet the needs of tunnel construction. The research results can be directly used to guide the construction of Tianshan Shengli Tunnel, and provide reference for the construction of extra long highway tunnels in high-altitude areas.
KeywordsTianshan Shengli Tunnel,   Expressway,   Extra long tunnel,   Three-tunnel method,   Middle pilot tunnel,   TBM,   Shaft     
Received: 2021-07-21;
Cite this article:   
WANG Shuaishuai1 MAO Jinbo2 ZHANG Binbin2 Li Yalong2 ZHAO Honggang2 .General Construction Technology Scheme of Tianshan Shengli Tunnel on Urumqi-Yuli Expressway[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(1): 55-68
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I1/55
 
No references of article
[1] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[2] ZHONG Wulin1 HAN Xingbo1 YE Fei1 WANG Han1 CAO Xiaoyong2 XI Weizheng2.Research on Wind Resistance and Optimization Design of Steel Corrugated Plate Support for Tunnel Shafts[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 197-207
[3] GENG Qi XIE Weifeng YANG Mulin WANG Xuebin HUANG Yufeng LI Lei LI Xiaobin LI Zhibiao.Development of a Scaled Multifunctional TBM Rock-breaking Test Platform[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 208-218
[4] WANG Lichuan1,2 YAN Guangtian1 YUAN Wei GAO Hongbing4 LI Liping2 ZHANG Chunyu1,5 WU Jian4 ZHANG Long3.Development and Application of TBM-mounted Omni-directional and Normal Deep Anchor Hole Drilling Machine[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 67-74
[5] ZHU Junlin1 ZHENG Mingming1, 2 PENG Linzhi ZHU Chengtao1 XIONG Liang1 ZHANG Yawei WU Zurui.Dynamic Response of Composite Support Structures Under Different Blasting Methods for TBM Breakout[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 117-125
[6] LI Jiuyuan1 GAO Fayong1 MA Yongtao1 TANG Mingyang2 FU Kang3 LI Yuheng2 XUE Yiguo2.Study on Surrounding Rock Identification and Excavation Speed Prediction in TBM Tunnels Based on the Interaction Mechanism of Rock-Machine Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 75-87
[7] JIA Lianhui1 ZHENG Wentao2 LU Yiqiang1 HE Fei1 SHANGGUAN Linjian2 ZHANG Yuxiang1.Force Analysis and Numerical Calculation Platform for Anti Back-sliding Device of TBM in Inclined Shafts[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 79-86
[8] ZHANG Guang1 GONG Qiuming1 XIE Xingfei1 PEI Chengyuan2 SHANG Ceng2.Interval Prediction of TBM Parameters in Stable Excavation Sections Based on Bootstrap-COA-BiGRU Model[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 121-131
[9] DONG Weijie1 ZHANG Siyang1 LI Bochang2 JIANG Yao1 CHEN Xu1 ZHENG Xiangle2 CHEN Sipan2 WU Di1.Study on TBM Jamming Problems in Jurassic and Cretaceous Argillaceous Sandstone Strata in Northern Xinjiang[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 151-161
[10] BAI Zhongkun1,2 WANG Yawei1,2 BI Chengcheng1,2 ZHAO Xiuwang1,2 ZHU Qiang3.Design and Experimental Research on Segment Sealing Gasket of Vertical Shaft Using Upward Pipe Jacking Technology[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 221-229
[11] LIU Shaoqiang1 XU Jianshu2 YANG Xiu2 TANG Qisheng1 XIE Xingfei1 GONG Qiuming1 ZHOU Xiaoxiong3.TBM Cutter Edge Tip Wear Phenomenon and Wear Evolution Characteristics[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(1): 20-27
[12] ZHANG Junwei1 YANG Zhe.Patterns and Distribution Characteristics of Shaft Construction Accidents in China (2003—2022)[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 1-8
[13] CHEN Jianxun1 WANG Heqi1, 2 JIA Haiyang1 LIU Weiwei1 LUO Yanbin1 ZHAO Zhiqiang1 HUANG Dengxia2.Testing and Analysis of Natural Ventilation in No. 1-2 Shaft in the Tianshan Shengli Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 219-23
[14] HUANG Dengxia1 LUO Yanbin2 ZHAO Zhiqiang2 CHEN Jianxun2 LIU Weiwei2 FENG Rubing1 WU Teligen1.Measurement and Analysis of Dust Concentration in Service Tunnel during Construction of Tianshan Shengli Tunnel with "TBM Method + Drill and Blast Method"[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(4): 77-85
[15] ZHANG Yan HUO Tao ZHANG Zhongwei MA Chunming.TBM Muck Segmentation Method Based on Global Perception and Edge Refinement[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(3): 141-147
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY