Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (2) :62-70    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
The Impact of Spatial Variability of Soils on Shield Tunnelling
(1. Department of Civil and Engineering, Shanxi Institute of Technology, Yangquan 045000; 2. College of Civil Engineering, Tongji University, Shanghai 200092)
Download: PDF (5906KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract To investigate the impact of spatial variability of soil strength parameters on the ground surface deforma? tion caused by shield tunnelling, the cohesion and internal friction angle are selected as the random variables, the random fields are discretized through the Karhunen-Loève expansion method, the soil parameters random fields are mapped respectively to FLAC 3D model elements by using the Matlab software, and analytical calculations are performed by using FLAC 3D software. The results show that the spatial variability of the soil strength parameters has a significant impact on ground surface deformation. Specifically, the impact of the scale of fluctuation in vertical direction is greater than that of the scale of fluctuation in horizontal direction, and the horizontal displacement of the ground surface is more affected than the ground surface settlement. Furthermore, when the scale of fluctuation in ver? tical direction is less than 1 times the tunnel diameter, the values of ground settlement obtained from multiple simulations conform to a normal distribution, allowing to estimate the exceeding probability or the specified limit of the ground surface settlement by deterministic analysis method.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
JIN Xuemei1
2 HUANG Hongwei2 ZHANG Dongming2
KeywordsShield tunnel   Ground surface deformation   Spatial variability   Cohesion   Internal friction angle     
Abstract: To investigate the impact of spatial variability of soil strength parameters on the ground surface deforma? tion caused by shield tunnelling, the cohesion and internal friction angle are selected as the random variables, the random fields are discretized through the Karhunen-Loève expansion method, the soil parameters random fields are mapped respectively to FLAC 3D model elements by using the Matlab software, and analytical calculations are performed by using FLAC 3D software. The results show that the spatial variability of the soil strength parameters has a significant impact on ground surface deformation. Specifically, the impact of the scale of fluctuation in vertical direction is greater than that of the scale of fluctuation in horizontal direction, and the horizontal displacement of the ground surface is more affected than the ground surface settlement. Furthermore, when the scale of fluctuation in ver? tical direction is less than 1 times the tunnel diameter, the values of ground settlement obtained from multiple simulations conform to a normal distribution, allowing to estimate the exceeding probability or the specified limit of the ground surface settlement by deterministic analysis method.
KeywordsShield tunnel,   Ground surface deformation,   Spatial variability,   Cohesion,   Internal friction angle     
Cite this article:   
JIN Xuemei1, 2 HUANG Hongwei2 ZHANG Dongming2 .The Impact of Spatial Variability of Soils on Shield Tunnelling[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(2): 62-70
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I2/62
 
No references of article
[1] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[2] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[3] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[4] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
[5] JIA Yonggang1 HAO Zihan1 LU Weidong1 WU Fan1 YANG Weiwei2.Mechanical Behavior of Steel Fiber Reinforced Concrete Segments with Different Joint Configurations[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 182-196
[6] TAN Xinyu1 WEI Meng1,2 LAN Lingshen1 SHANG Qiang1 ZHANG Haitao1.Experimental Test and Mechanism Study on Soil Adhesion Reduction Techniques for Mud Cake Formation on Shield Cutterheads[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 219-229
[7] LIU Pengfei1,2 ZENG Dexing2 WANG Xiao3 YANG Zhao2 LI Yu2.Experimental Evaluation and Application Study on the Shield Muck Cake Decomposition Agents[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 230-237
[8] HU Yunjin1,2,3 ZHU Mingwei GAO Huicai REN Zhihao1,2,3.null[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 50-59
[9] LI Hanyuan1,2 FENG Jin1 GUO Hongyu1 XIE Xiongyao2 ZHOU Hongsheng1 SUN Fei.Study on the Combined Bearing Mechanical Characteristics of the Double-layer Lining Structure of Subsea Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 126-138
[10] ZHANG Xinyang1,2 SHEN Yusheng1,2 CHANG Mingyu1,2 LIU Tong1,2 SUN Tianshe3, 4 HU Shuai3, 4.Study on the Control Law of Surface Deformation in Shield Tunnels in Mudstone Strata with the Clay Shock Construction Method[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 283-290
[11] YU Tongsheng1,2 GUAN Linxing3 YAN Zhiguo1,2.A Review of Researches on the Multi-disaster Scenarios and Structural Responses in Metro Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 16-26
[12] ZHU Yeting1,2 ZHU Yanfei1 WANG Zhihua1,3 WANG Shuaifeng4 WANG Hao1 MA Zhigang1.Theoretical Innovation, Method Implementation, and Engineering Verification of Shield Machine with Thrust Vector Intelligent Control[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 71-78
[13] XIAO Mingqing1 FENG Kun2 XUE Guangqiao1 WANG Yunchao2 LU Zhipeng1 CHEN Long2.Study on the Influence Factors of Additional Earth Pressure Caused by Shield Attitude Deviation in Soft Soil Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 141-150
[14] YAO Zhanhu1 YANG Qin2 LI Hui2 WEI Daiwei2 MENG Jia2.Study and Application of Dual-component Synchronous Grouting Technology in Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 265-273
[15] CAI Haoming.Effects of Bedrock Blasting Pretreatment on Shield Tunnelling and Rock Fragmentation Mechanism[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(1): 192-200
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY