Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2023, Vol. 60 Issue (3) :199-207    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Simulation Analysis of the Forces on Lining Structure of Shield Tunnels and Fire Resistance Measures during Fire
(1. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063; 2. Hubei Provincial Engineering Laboratory for Underwater Tunnel Technology, Wuhan 430063; 3. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education,Southwest Jiaotong University, Chengdu 610031)
Download: PDF (4890KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract As for the Jintang Subsea Tunnel on Ningbo-Zhoushan Railway, the numerical simulation method is used to analyze the stress, deformation and deterioration of shield tunnel lining structure induced by fire under the RABT standard heating curve, and to investigate the fire resistance of segmental lining structure of large-diameter shield tunnel under high temperature of fire and the fire resistance measures. As the results suggest, after 120 min of exposure to fire under the RABT heating curve, the fire heated surface of concrete lining reaches 1,119 ℃, so the lining structure cannot meet the fireproofing design requirements; the concrete lining starts deterioration after 5.3 min of exposure to fire, the failure zone continues expanding as the duration of fire increases, and when the fire stops, the maximum deterioration depth is greater than 12 cm; in addition, when the fire stops, the clearance convergence of the tunnel in both vertical and horizontal directions decreases as compared with that before the fire, and the absolute value of the decrease is 11.5 mm and 0.12 mm respectively; the 3 techniques, i.e. installing concrete refractory layer on segments, installing fire board and applying fire-resistant coating, will effectively enhance the fire resistance of the lining structure, but with comprehensive consideration of the factors such as suitability in practical engineering,it is recommended to use the C40 concrete refractory layer with ≥8 cm thickness or the fire-resistant coating with thermal conductivity <0.15 W/(m·K).
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
XIAO Mingqing1
2 YANG Wenqian3 FENG Kun3 JIAO Qizhu1 MAO Sheng1 WANG Yunchao3
KeywordsLarge diameter   Shield tunnel   Lining structure   Thermo-mechanical coupling   Fire resistance   Fire re? sistance measures     
Abstract: As for the Jintang Subsea Tunnel on Ningbo-Zhoushan Railway, the numerical simulation method is used to analyze the stress, deformation and deterioration of shield tunnel lining structure induced by fire under the RABT standard heating curve, and to investigate the fire resistance of segmental lining structure of large-diameter shield tunnel under high temperature of fire and the fire resistance measures. As the results suggest, after 120 min of exposure to fire under the RABT heating curve, the fire heated surface of concrete lining reaches 1,119 ℃, so the lining structure cannot meet the fireproofing design requirements; the concrete lining starts deterioration after 5.3 min of exposure to fire, the failure zone continues expanding as the duration of fire increases, and when the fire stops, the maximum deterioration depth is greater than 12 cm; in addition, when the fire stops, the clearance convergence of the tunnel in both vertical and horizontal directions decreases as compared with that before the fire, and the absolute value of the decrease is 11.5 mm and 0.12 mm respectively; the 3 techniques, i.e. installing concrete refractory layer on segments, installing fire board and applying fire-resistant coating, will effectively enhance the fire resistance of the lining structure, but with comprehensive consideration of the factors such as suitability in practical engineering,it is recommended to use the C40 concrete refractory layer with ≥8 cm thickness or the fire-resistant coating with thermal conductivity <0.15 W/(m·K).
KeywordsLarge diameter,   Shield tunnel,   Lining structure,   Thermo-mechanical coupling,   Fire resistance,   Fire re? sistance measures     
Cite this article:   
XIAO Mingqing1, 2 YANG Wenqian3 FENG Kun3 JIAO Qizhu1 MAO Sheng1 WANG Yunchao3 .Simulation Analysis of the Forces on Lining Structure of Shield Tunnels and Fire Resistance Measures during Fire[J]  MODERN TUNNELLING TECHNOLOGY, 2023,V60(3): 199-207
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2023/V60/I3/199
 
No references of article
[1] YAN Pengfei CAI Yongchang ZHOU Long.Nonlinear Model for Segment Joint Stiffness Based on Deep Neural Network and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 24-33
[2] QIAN Yuan1 XU Chong2 LIU Xiaorui2 HUANG Meng3.Study on the Cracking Mechanism of Subsea Shield Tunnel Segments under the Dual Mechanical Action of Loading and Corrosive Expansion[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 102-111
[3] HU Zhenyu1 FENG Kun1 GUO Wenqi1 PENG Changsheng2 LI Jiaoyang2.Study on the Impact of Different Construction Timings of Internal Structure on the Stress of Segmental Lining of the Shield Tunnel with an Super-large Section[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 90-101
[4] XUE Guangqiao1 YU Xiongbing3 XIAO Mingqing1,2 ZHANG Chaoyong3,4 HE Yingdao1,2.Numerical Simulation Study on Water Resistance of Gasket with Consideration of Compression-Joint Staggering-External Hydraulic Pressure[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 139-145
[5] HAN Xiaoming1,2 HE Yuan1,2 ZHANG Feilei2,3,4.Study on Key Construction Technology for Cross Passages in Large-diameter Shield Tunnels in Water-bearing Silty Fine Sand Stratum:A Case Study of the Karnaphuli River Tunnel Project in Bangladesh[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 227-235
[6] CHEN Jingxu CAI Yongchang.Research on Virtual Joint Test Method of Shield Tunnels Based on Independent Cover Isogeometric Shell Model[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 22-27
[7] ZHENG Shuang1,2 LIU Chao3 ZHU Delin3 LIU Hai3 JIA Xinjuan1.A Study on Disturbance Pattern of Asymmetric Synchronous Grouting on Ground during Large Diameter Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 168-177
[8] ZHANG Jianyong1 LI Mingyu2,3 CHEN Jian3,4 YU Liucheng2 LI Yixiang1 YANG Gongbiao3,4 WANG Yue2,3.Prediction Methods for Segment Uplift in Large-diameter Shield Tunnels Based on Double Elastic Foundation Beams[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 159-167
[9] WU Ze1 GU Fulin2 FU Yanbin3.Quantitative Deviation Correction Technologies for Subway Shield Tunnels in Operation through Compaction Grouting[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 185-193
[10] YUAN Jie1 QI Jiarui2 XIAO Xiang1 LI Zanxin1 YU Lixin1 PAN Yiheng2.An Experimental Study on the Active Regulation of Filling Pressure in Shield Receiving Steel Sleeve[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 230-237
[11] DU Yongxiao1,2,3 SUN Xiaoli1,2,4 YANG Jun1,2,4 ZHANG Yansen1,2.A Study on the Detection and Evaluation of the Technical Condition of Fire Damage in Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 260-270
[12] CAO Xiangpeng1,2 FENG Kun2 XUE Haoyun2 MAO Sheng1 YU Bo2,3.Study on Transverse Seismic Performance of Double Lining of Large Diameter Shield Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(1): 130-139
[13] CHEN Fujiang1 DUAN Rongqian1 ZHANG Xin2 LIU Jingang3 SUN Cangqian1 LI Xiqian1.Analysis on Vibration Influence of the Construction of Short-distance Pile Foundation on Existing Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(1): 140-148
[14] CAO Xiaoping1 WEI Zhikai1 LU Hongqiang2 MOU Jing2 FU Xiaolin2 LI Zhichao2.Research on the Effect of Foundation Reinforcement of Small-radius Shield Tunnels in Soft Soil Stratum Crossing under High-speed Rail under Construction[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(1): 209-218
[15] LIU Zhi1 ZHONG Changping2.Research on Key Technologies for Tunnelling in Faulted Fracture Zones by Slurry Balance Shields with Super Larg[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(1): 225-232
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY