Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2023, Vol. 60 Issue (4) :128-137    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on the Influence of Bolt Failure on Bending Strength of Longitudinal Joint of Shield Tunnel Segments
(Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031)
Download: PDF (4424KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract The purpose of this paper is to investigate the bending strength of shield tunnel segment joints after bolt failure or when bolts cannot be installed under special conditions. Based on the Jinan Yellow River Tunnel, a threedimensional refined numerical calculation model for large diameter shield tunnel segment joints with/without bolts is established based on ABAQUS, to analyze the opening angle of joint surface, bending stiffness of segment joint,the variation of bolt stress with the internal force of the joint and the law of joint compression damage when the segment joint is subjected to positive bending moment and negative moment with/without bolted connection. The results indicate that: (1) The influence of bolt failure on the opening angle of the joint is mainly reflected in the latter half of the joint stress state, and the greater the axial force on the joint, the weaker the influence of bolts on the opening angle of the joint. (2) The bending stiffness of the joint is smaller without bolted connection, and the decrease in the bending stiffness of the joint under the negative bending moment is smaller than that under the positive bending mo? ment. (3) The bending moment at which the bolt yields under the negative bending moment is greater than the yielding bending moment under the positive bending moment; and the greater the axial force on the joint, the greater the corresponding bending moment value when the bolt yields. (4) Under the high axial load, the compression damage of shield tunnel segments is almost unaffected by bolts.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
QI Meilin FENG Kun GUO Wenqi LU Xuanyi HE Chuan
Keywords:   
Abstract: The purpose of this paper is to investigate the bending strength of shield tunnel segment joints after bolt failure or when bolts cannot be installed under special conditions. Based on the Jinan Yellow River Tunnel, a threedimensional refined numerical calculation model for large diameter shield tunnel segment joints with/without bolts is established based on ABAQUS, to analyze the opening angle of joint surface, bending stiffness of segment joint,the variation of bolt stress with the internal force of the joint and the law of joint compression damage when the segment joint is subjected to positive bending moment and negative moment with/without bolted connection. The results indicate that: (1) The influence of bolt failure on the opening angle of the joint is mainly reflected in the latter half of the joint stress state, and the greater the axial force on the joint, the weaker the influence of bolts on the opening angle of the joint. (2) The bending stiffness of the joint is smaller without bolted connection, and the decrease in the bending stiffness of the joint under the negative bending moment is smaller than that under the positive bending mo? ment. (3) The bending moment at which the bolt yields under the negative bending moment is greater than the yielding bending moment under the positive bending moment; and the greater the axial force on the joint, the greater the corresponding bending moment value when the bolt yields. (4) Under the high axial load, the compression damage of shield tunnel segments is almost unaffected by bolts.
Keywords:   
Cite this article:   
QI Meilin FENG Kun GUO Wenqi LU Xuanyi HE Chuan .Study on the Influence of Bolt Failure on Bending Strength of Longitudinal Joint of Shield Tunnel Segments[J]  MODERN TUNNELLING TECHNOLOGY, 2023,V60(4): 128-137
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2023/V60/I4/128
 
No references of article
[1] FAN Wenhao1,2 XIE Shenghao1,2 ZHOU Feicong1,2 WANG Zhijie1,2 ZHANG Kai3 LUO Yunjian3.A Case Study on Adjacent Impact Zoning and Control Measures for New Double-line Shield Tunnel Undercrossing Existing Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 43-57
[2] XIAO Mingqing1,2 TANG Yuheng3 CHEN Junwei1,2 ZHANG Chaoyong3,4.Analysis of Gas Leakage Model and Influencing Factors of Shield Tunnel Segment Joint[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 6-13
[3] WU Gang1 LUO Wei2, 3 WANG Xiaolong1 ZHU Jingjing1 JIA Fei2, 3 XUE Yadong2, 3.Study on a Deep Learning-based Model for Detecting Apparent Defects in Shield Tunnel Lining[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(4): 67-75
[4] YAN Pengfei CAI Yongchang ZHOU Long.Nonlinear Model for Segment Joint Stiffness Based on Deep Neural Network and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 24-33
[5] QIAN Yuan1 XU Chong2 LIU Xiaorui2 HUANG Meng3.Study on the Cracking Mechanism of Subsea Shield Tunnel Segments under the Dual Mechanical Action of Loading and Corrosive Expansion[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 102-111
[6] HU Zhenyu1 FENG Kun1 GUO Wenqi1 PENG Changsheng2 LI Jiaoyang2.Study on the Impact of Different Construction Timings of Internal Structure on the Stress of Segmental Lining of the Shield Tunnel with an Super-large Section[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 90-101
[7] XUE Guangqiao1 YU Xiongbing3 XIAO Mingqing1,2 ZHANG Chaoyong3,4 HE Yingdao1,2.Numerical Simulation Study on Water Resistance of Gasket with Consideration of Compression-Joint Staggering-External Hydraulic Pressure[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 139-145
[8] XIAO Mingqing1,2 YANG Wenqian3 FENG Kun3 JIAO Qizhu1 MAO Sheng1 WANG Yunchao3.Simulation Analysis of the Forces on Lining Structure of Shield Tunnels and Fire Resistance Measures during Fire[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 199-207
[9] HAN Xiaoming1,2 HE Yuan1,2 ZHANG Feilei2,3,4.Study on Key Construction Technology for Cross Passages in Large-diameter Shield Tunnels in Water-bearing Silty Fine Sand Stratum:A Case Study of the Karnaphuli River Tunnel Project in Bangladesh[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(3): 227-235
[10] CHEN Jingxu CAI Yongchang.Research on Virtual Joint Test Method of Shield Tunnels Based on Independent Cover Isogeometric Shell Model[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 22-27
[11] ZHENG Shuang1,2 LIU Chao3 ZHU Delin3 LIU Hai3 JIA Xinjuan1.A Study on Disturbance Pattern of Asymmetric Synchronous Grouting on Ground during Large Diameter Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 168-177
[12] ZHANG Jianyong1 LI Mingyu2,3 CHEN Jian3,4 YU Liucheng2 LI Yixiang1 YANG Gongbiao3,4 WANG Yue2,3.Prediction Methods for Segment Uplift in Large-diameter Shield Tunnels Based on Double Elastic Foundation Beams[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 159-167
[13] WU Ze1 GU Fulin2 FU Yanbin3.Quantitative Deviation Correction Technologies for Subway Shield Tunnels in Operation through Compaction Grouting[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 185-193
[14] DU Yongxiao1,2,3 SUN Xiaoli1,2,4 YANG Jun1,2,4 ZHANG Yansen1,2.A Study on the Detection and Evaluation of the Technical Condition of Fire Damage in Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 260-270
[15] YUAN Jie1 QI Jiarui2 XIAO Xiang1 LI Zanxin1 YU Lixin1 PAN Yiheng2.An Experimental Study on the Active Regulation of Filling Pressure in Shield Receiving Steel Sleeve[J]. MODERN TUNNELLING TECHNOLOGY, 2023,60(2): 230-237
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY