Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2025, Vol. 62 Issue (4) :219-229    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Experimental Test and Mechanism Study on Soil Adhesion Reduction Techniques for Mud Cake Formation on Shield Cutterheads
(1. School of Environmental and Civil Engineering, Chengdu University of Technology, Chengdu 610059; 2. Sichuan Engineering Technology Research Center of Complex Geology TBM Intelligent Excavation and Disaster, Chengdu 610059)
Download: PDF (8120KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract The mud cake formation on shield cutterhead in clay strata severely impacts tunnelling efficiency. Traditional single-component soil conditioner faces limitations in adhesion inhibition effectiveness and unclear mechanisms. To resolve these limitations, this study develops a synergistic soil conditioning approach integrating foam agents and dispersants. Comprehensive experiments were conducted to assess adhesion reduction performance, supported by quantitative analyses of liquid-plastic limits, zeta potential, and interparticle repulsion energy to clarify the fundamental mechanisms. Results reveal that under optimal synergistic parameters (20% foam injection ratio with 0.1%-0.2% dispersant dosage), the combined additives achieve superior adhesion mitigation. The conditioners reduce the liquid-plastic limits and increase the negative charge of the soil, causing the Zeta potential to decrease with increasing conditioner dosage. Moreover, dispersants synergize with foam lubrication to intensify interparticle electrostatic repulsion energy, thereby effectively suppressing clay particle agglomeration and adhesion on cutterhead surface.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
TAN Xinyu1 WEI Meng1
2 LAN Lingshen1 SHANG Qiang1 ZHANG Haitao1
KeywordsShield tunnel   Soil adhesion   Dispersant   Foaming agent   Mechanism study     
Abstract: The mud cake formation on shield cutterhead in clay strata severely impacts tunnelling efficiency. Traditional single-component soil conditioner faces limitations in adhesion inhibition effectiveness and unclear mechanisms. To resolve these limitations, this study develops a synergistic soil conditioning approach integrating foam agents and dispersants. Comprehensive experiments were conducted to assess adhesion reduction performance, supported by quantitative analyses of liquid-plastic limits, zeta potential, and interparticle repulsion energy to clarify the fundamental mechanisms. Results reveal that under optimal synergistic parameters (20% foam injection ratio with 0.1%-0.2% dispersant dosage), the combined additives achieve superior adhesion mitigation. The conditioners reduce the liquid-plastic limits and increase the negative charge of the soil, causing the Zeta potential to decrease with increasing conditioner dosage. Moreover, dispersants synergize with foam lubrication to intensify interparticle electrostatic repulsion energy, thereby effectively suppressing clay particle agglomeration and adhesion on cutterhead surface.
KeywordsShield tunnel,   Soil adhesion,   Dispersant,   Foaming agent,   Mechanism study     
Cite this article:   
TAN Xinyu1 WEI Meng1, 2 LAN Lingshen1 SHANG Qiang1 ZHANG Haitao1 .Experimental Test and Mechanism Study on Soil Adhesion Reduction Techniques for Mud Cake Formation on Shield Cutterheads[J]  MODERN TUNNELLING TECHNOLOGY, 2025,V62(4): 219-229
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2025/V62/I4/219
 
No references of article
[1] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[2] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[3] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[4] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
[5] JIA Yonggang1 HAO Zihan1 LU Weidong1 WU Fan1 YANG Weiwei2.Mechanical Behavior of Steel Fiber Reinforced Concrete Segments with Different Joint Configurations[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 182-196
[6] LIU Pengfei1,2 ZENG Dexing2 WANG Xiao3 YANG Zhao2 LI Yu2.Experimental Evaluation and Application Study on the Shield Muck Cake Decomposition Agents[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 230-237
[7] HU Yunjin1,2,3 ZHU Mingwei GAO Huicai REN Zhihao1,2,3.null[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 50-59
[8] LI Hanyuan1,2 FENG Jin1 GUO Hongyu1 XIE Xiongyao2 ZHOU Hongsheng1 SUN Fei.Study on the Combined Bearing Mechanical Characteristics of the Double-layer Lining Structure of Subsea Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 126-138
[9] LIU Xiaodi WANG Huaidong2 JIANG Tao1 WANG Zhiguo3.Indoor Experimental Study on Rheological Properties of Conditioned Soils in Gravel Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 282-290
[10] ZHANG Xinyang1,2 SHEN Yusheng1,2 CHANG Mingyu1,2 LIU Tong1,2 SUN Tianshe3, 4 HU Shuai3, 4.Study on the Control Law of Surface Deformation in Shield Tunnels in Mudstone Strata with the Clay Shock Construction Method[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 283-290
[11] YU Tongsheng1,2 GUAN Linxing3 YAN Zhiguo1,2.A Review of Researches on the Multi-disaster Scenarios and Structural Responses in Metro Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 16-26
[12] ZHU Yeting1,2 ZHU Yanfei1 WANG Zhihua1,3 WANG Shuaifeng4 WANG Hao1 MA Zhigang1.Theoretical Innovation, Method Implementation, and Engineering Verification of Shield Machine with Thrust Vector Intelligent Control[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 71-78
[13] XIAO Mingqing1 FENG Kun2 XUE Guangqiao1 WANG Yunchao2 LU Zhipeng1 CHEN Long2.Study on the Influence Factors of Additional Earth Pressure Caused by Shield Attitude Deviation in Soft Soil Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 141-150
[14] YAO Zhanhu1 YANG Qin2 LI Hui2 WEI Daiwei2 MENG Jia2.Study and Application of Dual-component Synchronous Grouting Technology in Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 265-273
[15] CAI Haoming.Effects of Bedrock Blasting Pretreatment on Shield Tunnelling and Rock Fragmentation Mechanism[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(1): 192-200
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY