Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2020, Vol. 57 Issue (1) :36-43    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on the Shear Strength of Surrounding Rocks and Mechanical Behaviors of Supporting Structure of the Shallow-buried Tunnel in Swelling Soil
(1 China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031; 2 Key Laboratory of Transportation Tunnel Engineering,Ministry of Education, School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031; 3 KunmingSurvey, Design and Research Institute Co., Ltd. of CREEC, Kunming 650200)
Download: PDF (5789KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Swelling induced by water absorption of swelling soil results in complex swelling stress on tunnel supporting structure. In order to investigate the impact of strength declining and swelling effect of shallow-buried swelling soil on supporting structure, taking the Chenggong tunnel as the background, the relationship of shear strength and initial moisture content is verified by indoor direct shear test; based on the result of laboratory test,ABAQUS 3D finite element software is used to study the effect of soil swelling on tunnel support structure, and the impact of swelling effect on deformation of surrounding rocks and internal force of supporting structure under different buried depths is revealed. The results show that: friction angel and cohe sion decrease with an increase of moisture content, cohesion is significantly affected, the relationship between the shear strength and moisture content of swelling soil can be represented by quadratic parabola; large swelling pressure is produced due to restraint of supporting struc? ture after water absorption of swelling soil and it results in damage of surrounding rocks and increase of invert heaving and horizontal convergence of sidewall; after swelling of surrounding rocks, the axial force of primary supporting structure increases evenly, the bending moment increases slightly at haunch but largely at the foot of sidewall, and the supporting structure is in an unsafe state; swelling is largely affected by buried depth and no further swelling occurs when it reaches certain ultimate buried depth.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
TAO Weiming1 LI Huayun2 ZHANG Zhiqiang2 GUO Yongfa3
KeywordsTunnel engineering   Swelling soil   Laboratory test   Numerical simulation   Internal forces of supporting structures     
Abstract: Swelling induced by water absorption of swelling soil results in complex swelling stress on tunnel supporting structure. In order to investigate the impact of strength declining and swelling effect of shallow-buried swelling soil on supporting structure, taking the Chenggong tunnel as the background, the relationship of shear strength and initial moisture content is verified by indoor direct shear test; based on the result of laboratory test,ABAQUS 3D finite element software is used to study the effect of soil swelling on tunnel support structure, and the impact of swelling effect on deformation of surrounding rocks and internal force of supporting structure under different buried depths is revealed. The results show that: friction angel and cohe sion decrease with an increase of moisture content, cohesion is significantly affected, the relationship between the shear strength and moisture content of swelling soil can be represented by quadratic parabola; large swelling pressure is produced due to restraint of supporting struc? ture after water absorption of swelling soil and it results in damage of surrounding rocks and increase of invert heaving and horizontal convergence of sidewall; after swelling of surrounding rocks, the axial force of primary supporting structure increases evenly, the bending moment increases slightly at haunch but largely at the foot of sidewall, and the supporting structure is in an unsafe state; swelling is largely affected by buried depth and no further swelling occurs when it reaches certain ultimate buried depth.
KeywordsTunnel engineering,   Swelling soil,   Laboratory test,   Numerical simulation,   Internal forces of supporting structures     
Cite this article:   
TAO Weiming1 LI Huayun2 ZHANG Zhiqiang2 GUO Yongfa3 .Study on the Shear Strength of Surrounding Rocks and Mechanical Behaviors of Supporting Structure of the Shallow-buried Tunnel in Swelling Soil[J]  MODERN TUNNELLING TECHNOLOGY, 2020,V57(1): 36-43
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2020/V57/I1/36
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY