Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2020, Vol. 57 Issue (1) :44-50    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
On Relationship between Surrounding Rock Deformation and Surrounding Rock Pressure under Large Deformation of Soft Rock
(1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756; 2 Department of Railway Engineering, Sichuan College of Architecture Technology, Chengdu 610399)
Download: PDF (2187KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In order to understand the relationship between the deformation of surrounding rocks and the surround? ing rock pressure under large deformation of soft rock to provide basis for yielding design of large deformation, the maximum compressive stress of the elastic supporting structure after some deformations of a single-track railway tunnel without support is calculated by FLAC3D numerical simulation software, the surrounding rock pressure is identified indirectly, and the curve of surrounding rock pressures varying with time is obtained. The monitoring data of some similar projects are compared with this relationship curve, and the results show that: the pressure release curve is divided into three parts, i.e. steep drop area, adjustment area and slow dropping area; the large deformation of soft rock can be divided into convergence type and non-convergence type, it is economical and reasonable if the measur? able peripheral deformations can be controlled within 15 cm (3% of tunnel radius) in condition of convergence, and the best effect can be obtained by installing conventional systematic anchor bolts; the pressure release effect of surrounding rocks will be improved further when the measurable peripheral deformation is more than 63 cm(14% of tunnel radius)in condition of non-convergence; it will result in large increase of plastic zone if the pressures of surrounding rocks are reduced by large peripheral deformations, and the systematic anchor bolts play little role at this time.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
MA Shiqiang1
2
KeywordsSoft rock tunnel   Large deformation   Surrounding rock pressure   Surrounding rock deformation   System? atic anchor bolts;Reserved deformation     
Abstract: In order to understand the relationship between the deformation of surrounding rocks and the surround? ing rock pressure under large deformation of soft rock to provide basis for yielding design of large deformation, the maximum compressive stress of the elastic supporting structure after some deformations of a single-track railway tunnel without support is calculated by FLAC3D numerical simulation software, the surrounding rock pressure is identified indirectly, and the curve of surrounding rock pressures varying with time is obtained. The monitoring data of some similar projects are compared with this relationship curve, and the results show that: the pressure release curve is divided into three parts, i.e. steep drop area, adjustment area and slow dropping area; the large deformation of soft rock can be divided into convergence type and non-convergence type, it is economical and reasonable if the measur? able peripheral deformations can be controlled within 15 cm (3% of tunnel radius) in condition of convergence, and the best effect can be obtained by installing conventional systematic anchor bolts; the pressure release effect of surrounding rocks will be improved further when the measurable peripheral deformation is more than 63 cm(14% of tunnel radius)in condition of non-convergence; it will result in large increase of plastic zone if the pressures of surrounding rocks are reduced by large peripheral deformations, and the systematic anchor bolts play little role at this time.
KeywordsSoft rock tunnel,   Large deformation,   Surrounding rock pressure,   Surrounding rock deformation,   System? atic anchor bolts;Reserved deformation     
Cite this article:   
MA Shiqiang1, 2 .On Relationship between Surrounding Rock Deformation and Surrounding Rock Pressure under Large Deformation of Soft Rock[J]  MODERN TUNNELLING TECHNOLOGY, 2020,V57(1): 44-50
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2020/V57/I1/44
 
No references of article
[1] WEI Xinjiang1,2 CHEN Taotao2 WANG Xiao2 YU Xingfu1 ZHOU Lianying1.Progress in Research of the Rockburst Hazard[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 1-12
[2] QIN Hui1 TANG Yu2 XIE Xiongyao3, 4 WANG Zhengzheng1.Machine Recognition Method of Tunnel Lining Voids Based on SVM Algorithm[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 13-19
[3] ZHU Baohe ZHENG Bangyou DAI Yijun LIU Can.Prediction of Tunnel Coal and Gas Burst Hazard Based on Nonlinear Support Vector Machine[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 20-25
[4] YAN Changbin JIANG Xiaodi.Prediction Model of TBM Net Advance Rate Based on Parameters of Rock Mass and Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 26-33
[5] ZHANG Longguan1 DUAN Wenjun1 ZHUANG Yuanshun1 ZHANG Zhonghua1 LIU Suimei1 ZHANG Feng2.Research of Shield Big Data Preprocessing[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 34-41
[6] LIAO KAI1 LI LIN2 WU JIAN1.Design and Implementation of the Tunnel Overbreak and Underbreak Detecting Information System[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 42-48
[7] ZHANG Jun1 WANG Minghui1,2 XIANG Daoyin1 ZHANG Qiao1 JIANG Shuping1 LIU Weibang1.Quality Management Practice of Tunnel Secondary Lining Construction of Chongqing Section of Zhengzhou-Wanzhou High-speed Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 49-54
[8] QIN Pengfei.New Progress in Grouting Technology for Underground Works[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 55-60
[9] ZHANG Jinlong1 GOU Changfei2 YE Fei3.Structure Design and Parameter Analysis of a Large-section Sea-crossing Shield Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 61-67
[10] ZHENG Bangyou1 CHEN Fudong2 LEI Mingfeng2 WU Zhigang1 PENG Cheng1 YAO Yu1.Preliminary Study on Design Method of Waterproof Curtain Considering Ecological Environment Effect[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 68-72
[11] GUO Zhijie1,2 ZHANG Cancheng1,2.Application of Electrostatic Precipitation Technology to Shengli Tunnel in Tianshan[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 73-79
[12] YAN Su1,2.Six-stage Ventilation Techniques for the Large and Long Gas Tunnel with Trackless Transportation and Advance Construction of Parallel Adit[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 80-85
[13] SHAN Chao1,2 GAN Lu2,3 WANG Yadong2 CAO Xiaoyong1,2 LAI Jinxing2.Analysis of Mechanical Behaviors and Deformation Characteristics of the Loess Tunnel Reinforced by Lime-soil Compaction Piles[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 86-95
[14] ZHAO Wei1,2 LEI Shengxiang1,2,3 XIAO Qinghua1,2 LIU Jifeng4 CHEN Qiaofeng1,2.Study on Mechanical Effect of Steel Arch of Soft Rock Tunnel Based on Structural Characteristic Curve[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 96-103
[15] YU Li1,2 WANG Zhuhong1,2 ZHANG Yiteng1,2 JIANG Yongtao1,2 Wang Mingnian1,2.Influence of Earth-Rock Interface Height on Safety of Primary Support Structure of the Shallow-buried Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(2): 104-109
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY