Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2020, Vol. 57 Issue (4) :74-81    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Numerical Simulation Study on the Deformation and Failure Mechanism of Tunnel Surrounding Rock under the Effect of Water-rich Sand Layer
(1 School of Civil Engineering, Shandong Jianzhu University, Jinan 250101; 2 Jinan Rail Transit Group Co., Ltd, Jinan 250100;3 Shandong Institute of Geological Scences, Jinan 250013; 4 Shandong Provincial Academy of Building Research, Jinan, Shandong,250031)
Download: PDF (7224KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In order to study the deformation and failure mechanism of tunnel surrounding rock under the effect of water-rich sand layer, taking a running tunnel of metro line M2 in certain city as the background, the effect of five factors of thickness of the sand layer, thickness of the water-resisting layer, underground water level and cohesion and frictional angle of water-resisting layer is considered. Twenty five comparison schemes are designed, a systematic numerical simulation and comparison are carried out, the influence law of different factors on the deformation and failure mechanism of surrounding rock and the sensitivity degree of each factor are obtained, and the corresponding engineering measures are given as well. The results show that the crown is the key part of surrounding rock deformation and failure in tunnels subjected to the effect of water-rich sand layer; the deformation and area of plastic zone of surrounding rock at crown decreases with the increase of the thicknesses of water-resisting layer, cohesion and internal friction angle, while the deformation and area of plastic zone of surrounding rock at crown keeps increasing with the increase of thickness of the sand layer or underground water level; the thickness of the water-resisting layer and cohesion are the significant factors that affect the deformation and failure of surrounding rock under such conditions, adequate safety thickness of water-resisting layer at crown should be guaranteed as for the design of tunnel alignment and grouting reinforcement of water-resisting layer can be taken to improve the stability of tunnel surrounding rock.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LIU Ping1 LIU Chi2 WANG Hongtao1 ZHANG Hongjun3 YANG Yong4 ZHANG Xin1 LIU Luyao1
KeywordsWater-rich sand layer   Metro   Tunnel   Deformation and failure of surrounding rock   Numerical simula? tion   Influential factor   Sensitivity     
Abstract: In order to study the deformation and failure mechanism of tunnel surrounding rock under the effect of water-rich sand layer, taking a running tunnel of metro line M2 in certain city as the background, the effect of five factors of thickness of the sand layer, thickness of the water-resisting layer, underground water level and cohesion and frictional angle of water-resisting layer is considered. Twenty five comparison schemes are designed, a systematic numerical simulation and comparison are carried out, the influence law of different factors on the deformation and failure mechanism of surrounding rock and the sensitivity degree of each factor are obtained, and the corresponding engineering measures are given as well. The results show that the crown is the key part of surrounding rock deformation and failure in tunnels subjected to the effect of water-rich sand layer; the deformation and area of plastic zone of surrounding rock at crown decreases with the increase of the thicknesses of water-resisting layer, cohesion and internal friction angle, while the deformation and area of plastic zone of surrounding rock at crown keeps increasing with the increase of thickness of the sand layer or underground water level; the thickness of the water-resisting layer and cohesion are the significant factors that affect the deformation and failure of surrounding rock under such conditions, adequate safety thickness of water-resisting layer at crown should be guaranteed as for the design of tunnel alignment and grouting reinforcement of water-resisting layer can be taken to improve the stability of tunnel surrounding rock.
KeywordsWater-rich sand layer,   Metro,   Tunnel,   Deformation and failure of surrounding rock,   Numerical simula? tion,   Influential factor,   Sensitivity     
Cite this article:   
LIU Ping1 LIU Chi2 WANG Hongtao1 ZHANG Hongjun3 YANG Yong4 ZHANG Xin1 LIU Luyao1 .Numerical Simulation Study on the Deformation and Failure Mechanism of Tunnel Surrounding Rock under the Effect of Water-rich Sand Layer[J]  MODERN TUNNELLING TECHNOLOGY, 2020,V57(4): 74-81
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2020/V57/I4/74
 
No references of article
[1] WANG Jianyu.The Key Way is to Release the Genuine Rock Pressure—Discussion on Problems of Tunnelling in Squeezing Ground[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 1-11
[2] TANG Xie1 LIN Guojin1, 2 HE Jia1 WANG Jun1.Design and Practice of Auxiliary Construction Scheme for Micangshan Tunnel Using Ventilation Shaft[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 12-19
[3] LIAO Yankai1 GUO Deping1 LIU Zhiqiang2 CHEN Dayang2.Application of Peripheral Strain and Squeezing Factor Methods in the Prediction of Large Deformation of Tunnel Surrounding Rocks[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 20-26
[4] SUN Jianping TANG Zhaoping.Study and Evaluation on the Design Adaptability of Shield Cutterhead System[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 27-36
[5] YANG Tianren HE Fei NING Xiangke ZHANG Xiao TIAN Yanchao.Design and Application of Advanced Geological Prediction System of TBM for Gaoligongshan Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 37-42
[6] LIU Yuyang1 LAI Hongpeng2 WANG Minxing3 HE Qiumei4.Development and Application of Multi-point Independent Loading Testing System for Tunnel Lining[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 43-51
[7] ZHENG Aiyuan1 XU Bin2 CHEN Xiangsheng1.Study on Reliability of Steel Fiber Reinforced Concrete Segments of Metro in Marine Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 52-58
[8] CHEN Yunyao1,2 ZHANG Junwei1 MA Shiwei2 LI Xue1.Study on Design Parameters of Sealing Gasket for Segment Joints of Shield Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 59-66
[9] REN Lei1 NIU Bin2 GUO Ting2 LIU Songyu2.Study on the Influence of Flexibility Ratio on Tunnel Seismic Dynamic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 67-73
[10] JIANG Yongtao1 WANG Mingnian1 ZHANG Yiteng1 YU Li1 JIANG Fan2 XIAO Zerong3.Prediction Method for Surface Settlement in Tunnel Construction with Pipe Curtain Support[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 82-90
[11] ZHANG Yiteng1 SUN Xingliang2 JIANG Yongtao1 YU Li1 JIANG Fan3 CHEN Mingyue3 XIAO Zerong4.Research on Vault Ultimate Displacement at Different Tunnel Construction Stages in Surrounding Rock of Grade Ⅴ[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 91-97
[12] WEN Shuli.Influence of Deep Foundation Pit Excavation on Adjacent Buildings and Optimization of Reinforcement Measures[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 98-103
[13] ZHANG Jing1, 2.Study on Calculations and Influence Factors of Bending Stiffness of Segment Ring Joints of Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 104-112
[14] WANG Chengjing ZHANG Yong ZHU Chengshan HAN Xiang.Analysis of Influence of Flowing Water in Tunnel on Freezing Effect of Cross Passage[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 113-118
[15] MI Shipeng.Research on Soil Plug Pressure-bearing Characteristics of Screw Conveyor with Variable Pitch[J]. MODERN TUNNELLING TECHNOLOGY, 2020,57(4): 119-126
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY