Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (1) :207-213    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Anti-seismic Effect of Fiber-reinforced Concrete Lining at Tunnel Portals in High-intensity Seismic Areas
(1. School of Civil Engineering, North China University of Technology, Beijing 100144; 2. China Railway Tunnel Group Co., Ltd.,Guangzhou 511458)
Download: PDF (3437KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In order to improve the safety of tunnel portal lining structure during earthquake, taking the portal section of a highway tunnel as the research background, it carries out comparative analysis with the finite element analysis software ABAQUS on the anti-seismic effects of steel fiber reinforced concrete (SFRC), steel-basalt hybrid fiber reinforced concrete (SBHFRC) and plain concrete as secondary lining structure materials. The results show that: (1)compared with plain concrete lining, under the condition of the same fiber volume content, the maximum and minimum principal stress peaks and shear stress peaks of SFRC secondary lining are increased by 34.27%, 23.56% and 23.54% respectively, while those of SBHFRC secondary lining are increased by 3.90%, 3.37% and 3.32% respectively; (2) the equivalent displacements of SFRC and SBHFRC secondary lining structures are reduced by 8.08% and 2.36% respectively; and (3) the average safety factors of monitoring points on the monitoring sections of SFRC and SBHFRC secondary lining structures are increased by 38.73% and 50.04% respectively.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
CUI Guangyao1 JIANG Mengxin1 WANG Mingsheng2
KeywordsHighway tunnel   High-intensity seismic area   Portal section   Fiber-reinforced concrete   Anti-seismic effect     
Abstract: In order to improve the safety of tunnel portal lining structure during earthquake, taking the portal section of a highway tunnel as the research background, it carries out comparative analysis with the finite element analysis software ABAQUS on the anti-seismic effects of steel fiber reinforced concrete (SFRC), steel-basalt hybrid fiber reinforced concrete (SBHFRC) and plain concrete as secondary lining structure materials. The results show that: (1)compared with plain concrete lining, under the condition of the same fiber volume content, the maximum and minimum principal stress peaks and shear stress peaks of SFRC secondary lining are increased by 34.27%, 23.56% and 23.54% respectively, while those of SBHFRC secondary lining are increased by 3.90%, 3.37% and 3.32% respectively; (2) the equivalent displacements of SFRC and SBHFRC secondary lining structures are reduced by 8.08% and 2.36% respectively; and (3) the average safety factors of monitoring points on the monitoring sections of SFRC and SBHFRC secondary lining structures are increased by 38.73% and 50.04% respectively.
KeywordsHighway tunnel,   High-intensity seismic area,   Portal section,   Fiber-reinforced concrete,   Anti-seismic effect     
Received: 2021-07-07;
Cite this article:   
CUI Guangyao1 JIANG Mengxin1 WANG Mingsheng2 .Anti-seismic Effect of Fiber-reinforced Concrete Lining at Tunnel Portals in High-intensity Seismic Areas[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(1): 207-213
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I1/207
 
No references of article
[1] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[2] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[3] ZHONG Wulin1 HAN Xingbo1 YE Fei1 WANG Han1 CAO Xiaoyong2 XI Weizheng2.Research on Wind Resistance and Optimization Design of Steel Corrugated Plate Support for Tunnel Shafts[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 197-207
[4] JIA Yonggang1 HAO Zihan1 LU Weidong1 WU Fan1 YANG Weiwei2.Mechanical Behavior of Steel Fiber Reinforced Concrete Segments with Different Joint Configurations[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 182-196
[5] LI Qiang1 HAN Xingbo2 XIE Ju1 LI Chao3 LI Xing3 MA Aihua1 BI Jiefu3 YE Fei.Tunnel Energy Supply Strategy and Practice with Grid-Connected PV-Storage Microgrid: A Case Study of the Wudingguan Tunnel Photovoltaic Power Station Project[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 60-66
[6] TANG Xie LIN Guojin1, 2 ZHANG Hang2.Adaptive Strategies for Mechanized Drill-and-Blast Construction in Highway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 217-228
[7] LIU Shangguo1 CI Naiquan1 LIU Rufei1 CHENG Kun2 WANG Fei1 MA Xinjiang3.Tunnel Crown Deformation Monitoring Method Based on Vehicle-mounted Laser Point Clouds[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 209-216
[8] CHEN Xiang1,2 LIN Zhi1,2 FENG Wanlin1,2 YANG Hongyun1,2.Experimental Study on Crack Propagation Characteristics and Mechanical Behavior of Plain Concrete Lining in Highway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 212-220
[9] TAN Yinjun1,2 WANG Keli1,2 ZHANG Heng1,2 ZHANG Zhiqiang1,2.Influence of Natural Wind on Fire Smoke Propagation in 10 km Long Highway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(1): 103-113
[10] CHEN Jianxun1 WANG Heqi1, 2 JIA Haiyang1 LIU Weiwei1 LUO Yanbin1 ZHAO Zhiqiang1 HUANG Dengxia2.Testing and Analysis of Natural Ventilation in No. 1-2 Shaft in the Tianshan Shengli Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 219-23
[11] HE Shiyong1,2 TANG Huanhuan2 LIANG Bo1,2 SHI Lingna3 LI Jie2 LIU Hao2 WANG Xiaoyu2.Research Status and Progress of Linkage Theory and Technology of Ventilation and Lighting in Extra-long Highway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(4): 28-40
[12] LIU Yuan1,2,3 YU Li1,2,3 WANG Xue1,2,3 GUO Xiaohan1,2,3 LU Ming1,2,3.Study on the Generation Mechanism of Non-exhaust Emissions from New Energy Vehicles and Its Impact on Air Demands in Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(4): 41-50
[13] FENG Shouzhong1 ZHOU Long2 MAO Weixing1 LI Jie3 GAO Wei1.Experimental Study on the Impact of Side Wall Coating on Luminous Environment of Highway Tunnel and Visual Characteristics of Human Eyes[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(3): 220-227
[14] WANG Mingnian1,2 DENG Tao3 YU Li1,2.Development and Prospects of Operation and Disaster Prevention Ventilation Technology in China′s Traffic Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(2): 152-166
[15] QU Jianrong1 JING Yawen2 REN Zhaodan1 XIONG Ying2 CHEN Xuefeng1 FENG Jimeng2.Study on Correction of Surrounding Rock Classification for Single-tube Four-lane Highway Tunnel Based on the Failure Characteristics of Surrounding Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(1): 48-55
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY