Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2022, Vol. 59 Issue (5) :72-79    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on the Influence of Different Degrees of Leakage on Long-term Settlement of Shield Tunnels
(1. State Key Laboratory of Building Safety and Built Environment, Beijing 100013; 2. Foundation Engineering Research Institute of China Academy of Building Sciences,Beijing 100013; 3. School of Civil Engineering, Xuzhou University of Technology, Xuzhou 221018;4. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001; 5. Wuhan Metro Group Co., Ltd.,Wuhan 430070; 6. School of Architectural Engineering, Chang′an University, Xi′an 710061)
Download: PDF (5634KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract To address the increasingly prominent long-term settlement problem of shield tunnels in soft soil areas, the Shanghai Metro Line 2 project is used as the study case. Considering the coupling of soil consolidation and seepage, the long-term settlement pattern of tunnels in viscoelastic soil under different seepage conditions after construction disturbance is studied by using FLAC 3D numerical simulation method. And the influence patterns of different degrees of water seepage on the dissipation of excess pore pressure in the soil around the tunnel, pore pressure distribution,and long-term settlement of the tunnel and ground were comprehensively analyzed. It was found that when tunnel lining leakage occurs, the excess pore water pressure dissipates continuously with the growth of time, and the dissipation rate becomes gradually smaller with the distance to the tunnel from near to far. The larger the relative permeability coefficient, the stronger the permeability of the tunnel lining, and the more obvious the reduction of its pore pressure after the same time; tunnel settlement continues to increase with time, the larger the relative permeability coefficient, the greater the tunnel settlement at the same moment, and the greater the curvature of the ground settlement trough formed.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LI Xiangyu1
2 LI Xinyuan3 LI Mingyu4 YANG Xiao5 HUANG Pei6
KeywordsShield tunnel   Long-term settlement   Seepage   Degree of leakage   Excess pore water pressure     
Abstract: To address the increasingly prominent long-term settlement problem of shield tunnels in soft soil areas, the Shanghai Metro Line 2 project is used as the study case. Considering the coupling of soil consolidation and seepage, the long-term settlement pattern of tunnels in viscoelastic soil under different seepage conditions after construction disturbance is studied by using FLAC 3D numerical simulation method. And the influence patterns of different degrees of water seepage on the dissipation of excess pore pressure in the soil around the tunnel, pore pressure distribution,and long-term settlement of the tunnel and ground were comprehensively analyzed. It was found that when tunnel lining leakage occurs, the excess pore water pressure dissipates continuously with the growth of time, and the dissipation rate becomes gradually smaller with the distance to the tunnel from near to far. The larger the relative permeability coefficient, the stronger the permeability of the tunnel lining, and the more obvious the reduction of its pore pressure after the same time; tunnel settlement continues to increase with time, the larger the relative permeability coefficient, the greater the tunnel settlement at the same moment, and the greater the curvature of the ground settlement trough formed.
KeywordsShield tunnel,   Long-term settlement,   Seepage,   Degree of leakage,   Excess pore water pressure     
Cite this article:   
LI Xiangyu1, 2 LI Xinyuan3 LI Mingyu4 YANG Xiao5 HUANG Pei6 .Study on the Influence of Different Degrees of Leakage on Long-term Settlement of Shield Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2022,V59(5): 72-79
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2022/V59/I5/72
 
No references of article
[1] WANG Zijian1 LIU Teng2 JI Xiaodong1 LIU Xueyan1.Study on the Upper Limit of Stability of the Slope Excavation Face of a Shield Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(6): 42-50
[2] CHEN Rendong1 LU Ping2 SUN Ye1 LIU Minggao1 PANG Kang1.Centrifuge Model Test of the Cross Passages in Super Large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(6): 114-124
[3] ZHOU Shengli.Posture Destabilization and Treatment Measures of Large Diameter Shield in Soft Mudstone[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(6): 208-215
[4] LIU Bin1 ZHAO Dongping2, 3 LI Dong3.Study on Grouting Reinforcement Range of Shield Tunnel Undercrossing Expressway in Composite Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(6): 187-196
[5] GUAN Linxing1 WEN Zhuyin1 WANG Xiaopeng2 YOU Guangming1 SUN Wei1 ZHUANG Qianwei3.Test and Study on the Application of Synthetic Macro-fibers in the Segements of Drainage and Storage Tunnels Built by Shield Method[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(6): 258-265
[6] HUANG Zhongkai1 ZHANG Dongmei1 ZHOU Wending1 CHENG Yixin1 TONG Yue2.The Cross-section Deformation Prediction Method for Shield Tunnel Using Bayesian Network[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(5): 10-17
[7] YANG Zhenhua.Distribution Law of Longitudinal Stress of the Shallow-covered Receiving Shield Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(5): 18-26
[8] ZHAO Sensen ZHANG Dongmei HUANG Zhongkai.Mechanical Characteristics of Distributed Mortise-and-Tenon of Largediameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(5): 54-62
[9] LI Chunlin1 ZHANG Xiwen2,3 LIU Guangsen2,3 LIU Junyan2,3 LIU Yan2,3 SUN Wenhao4 ZHANG Liangliang4.Research on Mechanical and Deformation Characteristics of Large Diameter Shield Tunnels under Cyclic Loadings[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(5): 47-53
[10] CUI Qinglong1 LI Jin1 GAO Binyong2 XIONG Xinyue2.Mechanical Properties of Three-inclined Bolts in Longitudinal Joint of Large-diameter Shield Tunnel Segment[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(5): 63-71
[11] MO Weiliang1 YANG Yubing1 LIN Yuexiang2,3 LU Mingjian1.Measurement and Calculation Method for Shield Tunnel Segment Dislocation Deformation Based on OFDR Technology[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(5): 179-187
[12] ZHANG Tingrui.Research on Thermal Properties and Mechanical Behaviors of Large Shield Tunnel in Fire[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(5): 202-211
[13] XIAO Mingqing1, 2 XUE Guangqiao1, 2 ZHAO Mingying1, 2.Experimental Research on Mechanical Performance of Longitudinal Joint of Shield Tunnels with Quick Connectors[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(5): 154-162
[14] HE Chuangbo1,2,3 XU Chao 1,2,3 YANG Zhao1,2,3 LIU Pengfei 1,2,3 ZHENG Jiajia4 GAO Ruchao1,2,3.Research on the Waterproof Performance of Segment Rubber Gasket Considering the Groove Boundary and Paste Quality[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(5): 195-201
[15] WEI Longhai1 WANG Miao2 WU Shuyuan1.Overall Design and Key Technologies of Nanjing Jianning West Road Rivercrossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2022,59(5): 228-236
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY