Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2024, Vol. 61 Issue (6) :45-54    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on the Impact Zoning and Fortification Range of Tunnel Structures Crossing Strike-slip Faults
(1. China Railway Eryuan Engineering Group Co.Ltd. Chengdu 610031;2.China Railway Economic Planning and Research Institute Co., Ltd. Beijing 100038;3.Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031)
Download: PDF (6295KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract To address the issue of impact zoning and fortification range for tunnels crossing strike-slip faults, a tunnel in a high-altitude and high-intensity area with active faults was studied. Using finite difference numerical simulation, the strain, deformation, and internal force characteristics of tunnel structures under strike-slip fault dislocation were analyzed. Impact zones and corresponding zoning were proposed, and a physical model test of the tunnel was conducted to validate the fault dislocation failure mechanisms and structural response characteristics. The impact scope and patterns induced by fault dislocation were determined. The results indicate that under strike-slip fault dislocation, the tunnel primarily undergoes horizontal compressive deformation at the arch haunch. As fault dislocation increases, deformation continues to grow, but the rate of growth decreases. The impact zones are divided into three categories: primary impact zone, secondary impact zone, and stable zone. The primary impact zone includes ranges of 1.4D on the fixed fault wall, 2.1D on the active fault wall, and the entire fault zone (where D is the tunnel span). The secondary impact zone on the active fault wall ranges from 2.1D to 6.3D, while other areas fall into the stable zone. Maximum shear stress is concentrated in the fault dislocation-affected zone, which requires enhanced fault dislocation-resisting design. The fault zone exhibits a stepwise decrease in displacement due to the joint displacement of the active wall, with the interface between the upper and lower walls and fault serving as the main sliding surface. Relative dislocation within the fault zone is minimal, and the tunnel structure's affected range includes the fault zone interior, 0.7D on the upper wall, and 1.5D on the lower wall.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KUANG Liang1 SU Wei1 TAO Weiming1 TIAN Siming2 SHEN Yusheng3 LI Xu2 WANG Huiwu1
KeywordsRailway tunnel   Strike-slip active fault   Impact zoning   Protection scope   Numerical simulation   Model test     
Abstract: To address the issue of impact zoning and fortification range for tunnels crossing strike-slip faults, a tunnel in a high-altitude and high-intensity area with active faults was studied. Using finite difference numerical simulation, the strain, deformation, and internal force characteristics of tunnel structures under strike-slip fault dislocation were analyzed. Impact zones and corresponding zoning were proposed, and a physical model test of the tunnel was conducted to validate the fault dislocation failure mechanisms and structural response characteristics. The impact scope and patterns induced by fault dislocation were determined. The results indicate that under strike-slip fault dislocation, the tunnel primarily undergoes horizontal compressive deformation at the arch haunch. As fault dislocation increases, deformation continues to grow, but the rate of growth decreases. The impact zones are divided into three categories: primary impact zone, secondary impact zone, and stable zone. The primary impact zone includes ranges of 1.4D on the fixed fault wall, 2.1D on the active fault wall, and the entire fault zone (where D is the tunnel span). The secondary impact zone on the active fault wall ranges from 2.1D to 6.3D, while other areas fall into the stable zone. Maximum shear stress is concentrated in the fault dislocation-affected zone, which requires enhanced fault dislocation-resisting design. The fault zone exhibits a stepwise decrease in displacement due to the joint displacement of the active wall, with the interface between the upper and lower walls and fault serving as the main sliding surface. Relative dislocation within the fault zone is minimal, and the tunnel structure's affected range includes the fault zone interior, 0.7D on the upper wall, and 1.5D on the lower wall.
KeywordsRailway tunnel,   Strike-slip active fault,   Impact zoning,   Protection scope,   Numerical simulation,   Model test     
Cite this article:   
KUANG Liang1 SU Wei1 TAO Weiming1 TIAN Siming2 SHEN Yusheng3 LI Xu2 WANG Huiwu1 .Study on the Impact Zoning and Fortification Range of Tunnel Structures Crossing Strike-slip Faults[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(6): 45-54
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2024/V61/I6/45
 
No references of article
[1] ZHANG Chengyou1 WANG Bo1 DU Zehao1 GAO Junhan1 TAN Lihao2.Analysis of the Suitability of Different Anchor Bolt Support Systems for Rockburst Mitigation and Optimization of Anchor Bolt Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 64-73
[2] ZHANG Xinyang1, 2 SHEN Yusheng1, 2 CHANG Mingyu1, 2 WANG Haokang1, 2 PAN Xiaohai1, 2 WANG Yanyan1, 2.Mix Proportion Design of Similar Materials for Tunnel Surrounding Rocks Based on GA-BP Neural Network[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 82-91
[3] QIU Wei1 ZENG Qingcheng1 OUYANG Jian1 MU Haixing2 GUO Wenqi2 FENG Kun2 HU Dawei3.Study on Shear Mechanical Performances of Circumferential Mortise and Tenon Joints with Oblique Bolts in Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 129-138
[4] YANG Wendong1 WU Yang1 WANG Zhide1 WU Haigang1,2 LI Gen1.Experimental Study on the Influence Zoning on Existing Pile Foundations Induced by Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 200-208
[5] WANG Shengtao1 ZHANG Junru2 PENG Bo1 YAN Bo3.Research on Treatment Technology for Arch Bridge-tunnel Integrated Structure Spanning a Large Karst Cave Section[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 263-273
[6] LI Dong1 ZHOU Yue2 WANG Feng3 LI Weipeng4 YE Jiexian5 CAO Xiong1 BAI Zhenchao5.Numerical Simulation of Variable Frequency Seepage Flow in Tunnel Surrounding Rock Joint Fractures[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 146-155
[7] MA Jianjun1,4 TANG Rong1 LIU Cong2 HUANG Weizhen1 LIN Yuexiang3.Study on the Mechanical Properties of Sandstone and Stability of Under-river Tunnels under Creep-permeability Coupling[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 156-166
[8] WEI Ronghua1,2 ZHANG Kangjian1,2 ZHANG Zhiqiang1,2.Optimization Study of Waterproof and Drainage Technology Parameters for Deep-buried Ditches in Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 183-192
[9] YANG Chunshan1 XU Shiyang2 WEI Lixin1 CHEN Junsheng3.Experimental Study on the Mechanical Characteristics of Shield Tunnels under Vertical Jacking[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 210-218
[10] SONG Yuepeng1 FAN Xiaofeng2 LIANG Yu2,3,4 PENG Hongguo5 ZHANG Hanwei5.Deformation Monitoring and Analysis during the Excavation of Deep Circular Shafts in Intercity Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 219-226
[11] WANG Yuanye1 DING Wenqi1,2 YANG Jinjing3 QIAO Yafei1,2 DING Wenyun3.Study on the Disturbance Patterns of Roadheader Construction of Large-section Railway Tunnel Under-crossing Existing Buildings in Karst Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 274-284
[12] LIU Xiaohui1 FENG Kun1 GUO Wenqi1 LU Xuanyi1 PENG Changsheng2 LI Jiaoyang2.Study on the Influence of Construction Methods of Internal Structures on Longitudinal Mechanical Characteristics of Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(4): 151-160
[13] ZHU Meiheng1 CHEN Sirui2 HUANG Zhongkai2 LI Yongbo1 ZHANG Wuyu3 ZHANG Dongmei2.Study on the Deformation Law of Large-diameter Fully Prefabricated Assembled Shield Tunnels under Ground Surcharge[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(4): 161-171
[14] SU Peidong LU Xinghao LI Yougui QIU Peng AN Xingling.Study on Multi-factors Affecting Construction Ventilation in Hydraulic Tunnels with Gas in Tingzikou Irrigation Area[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(4): 180-191
[15] PAN Xiaohai1 SHEN Yusheng1 WANG Haokang1 WANG Yanyan1 ZHANG Xinyang1 ZHANG Xi1 ZUO Leibin2.Study on Response Characteristics of the Tunnel Structure under Dislocation of Strike-slip Faults with Multiple Fracture Surfaces[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(4): 210-220
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY