Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2024, Vol. 61 Issue (6) :139-147    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Study on Settlement Patterns of the CFG Pile-reinforced High-speed Railway Subgrade Caused by Parallel Shield Tunnelling
(1. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518061;2. Sinohydro Bureau 8 Co., Ltd., Changsha 410004; 3. Key Laboratory for Resilient Infrastructures of Coastal Cities (Shenzhen University), MOE, Shenzhen 518061; 4. Shenzhen Key Laboratory of Green, Efficient and Intelligent Construction of Underground Metro Station, Shenzhen 518061)
Download: PDF (5399KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Focusing on the shield tunnelling of the Xi′an Metro Line 1 beneath the Xuzhou-Lanzhou High-speed Railway, this study performs a statistical analysis of the monitored track settlement data before and after the tunnelling. A refined three-dimensional finite element model of parallel shield tunnelling crossing under a high-speed railway subgrade is established using Plaxis-3D software. The numerical model′s validity is verified through comparison with field measurements. Based on the model, the settlement transfer mechanism of the track-subgradeCFG pile-soil-shield tunnel system induced by shield tunnelling is analyzed, and the stress and deformation behaviors of CFG piles are investigated. Research results indicate that when the shield tunnel completely passes through the railway subgrade, a 50 m long surface settlement trough forms, with a double-peak distribution curve. The bottom of CFG piles becomes loose after shield tunnelling beneath the railway subgrade, resulting in an effective pile length of 75% of the original length. The range of loosening in CFG piles in the horizontal and longitudinal sections of this project is determined as (-12.6 m, 12.6 m) by studying CFG piles at different positions.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
WU Beiyu1 XIE Weiping2 LIN Xingtao1
3
4 GAO Chen2 SU Dong1
3
4 CHEN Xiangsheng1
3
4
KeywordsShield tunnel   Tunnelling beneath high-speed railway subgrade   CFG pile-soil structure   Settlement; Effective pile length of CFG piles     
Abstract: Focusing on the shield tunnelling of the Xi′an Metro Line 1 beneath the Xuzhou-Lanzhou High-speed Railway, this study performs a statistical analysis of the monitored track settlement data before and after the tunnelling. A refined three-dimensional finite element model of parallel shield tunnelling crossing under a high-speed railway subgrade is established using Plaxis-3D software. The numerical model′s validity is verified through comparison with field measurements. Based on the model, the settlement transfer mechanism of the track-subgradeCFG pile-soil-shield tunnel system induced by shield tunnelling is analyzed, and the stress and deformation behaviors of CFG piles are investigated. Research results indicate that when the shield tunnel completely passes through the railway subgrade, a 50 m long surface settlement trough forms, with a double-peak distribution curve. The bottom of CFG piles becomes loose after shield tunnelling beneath the railway subgrade, resulting in an effective pile length of 75% of the original length. The range of loosening in CFG piles in the horizontal and longitudinal sections of this project is determined as (-12.6 m, 12.6 m) by studying CFG piles at different positions.
KeywordsShield tunnel,   Tunnelling beneath high-speed railway subgrade,   CFG pile-soil structure,   Settlement; Effective pile length of CFG piles     
Cite this article:   
WU Beiyu1 XIE Weiping2 LIN Xingtao1, 3, 4 GAO Chen2 SU Dong1 etc .Study on Settlement Patterns of the CFG Pile-reinforced High-speed Railway Subgrade Caused by Parallel Shield Tunnelling[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(6): 139-147
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2024/V61/I6/139
 
No references of article
[1] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[2] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[3] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[4] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
[5] JIA Yonggang1 HAO Zihan1 LU Weidong1 WU Fan1 YANG Weiwei2.Mechanical Behavior of Steel Fiber Reinforced Concrete Segments with Different Joint Configurations[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 182-196
[6] TAN Xinyu1 WEI Meng1,2 LAN Lingshen1 SHANG Qiang1 ZHANG Haitao1.Experimental Test and Mechanism Study on Soil Adhesion Reduction Techniques for Mud Cake Formation on Shield Cutterheads[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 219-229
[7] LIU Pengfei1,2 ZENG Dexing2 WANG Xiao3 YANG Zhao2 LI Yu2.Experimental Evaluation and Application Study on the Shield Muck Cake Decomposition Agents[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 230-237
[8] HU Yunjin1,2,3 ZHU Mingwei GAO Huicai REN Zhihao1,2,3.null[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 50-59
[9] LI Hanyuan1,2 FENG Jin1 GUO Hongyu1 XIE Xiongyao2 ZHOU Hongsheng1 SUN Fei.Study on the Combined Bearing Mechanical Characteristics of the Double-layer Lining Structure of Subsea Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 126-138
[10] ZHANG Xinyang1,2 SHEN Yusheng1,2 CHANG Mingyu1,2 LIU Tong1,2 SUN Tianshe3, 4 HU Shuai3, 4.Study on the Control Law of Surface Deformation in Shield Tunnels in Mudstone Strata with the Clay Shock Construction Method[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 283-290
[11] SONG Zhanping1,2,3 LI Xueli1 ZHANG Yuwei1,2,3 ZHONG Shiming1 SHI Wei4.Review and Prospect of the Mining Construction Methods for Subway Stations in China[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 1-15
[12] YU Tongsheng1,2 GUAN Linxing3 YAN Zhiguo1,2.A Review of Researches on the Multi-disaster Scenarios and Structural Responses in Metro Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 16-26
[13] ZHU Yeting1,2 ZHU Yanfei1 WANG Zhihua1,3 WANG Shuaifeng4 WANG Hao1 MA Zhigang1.Theoretical Innovation, Method Implementation, and Engineering Verification of Shield Machine with Thrust Vector Intelligent Control[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 71-78
[14] XIAO Mingqing1 FENG Kun2 XUE Guangqiao1 WANG Yunchao2 LU Zhipeng1 CHEN Long2.Study on the Influence Factors of Additional Earth Pressure Caused by Shield Attitude Deviation in Soft Soil Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 141-150
[15] YAO Zhanhu1 YANG Qin2 LI Hui2 WEI Daiwei2 MENG Jia2.Study and Application of Dual-component Synchronous Grouting Technology in Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 265-273
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY