River-crossing tunnel,Slurry balance shield,Ultimate support stress,Slurry pressure,Numerical analysis," /> Quantitative Analysis of the Factors Affecting the Face Instability of a River-Crossing Shield Tunnel of the Nanjing Metro
 
   Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2013, Vol. 50 Issue (5) :112-117    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Quantitative Analysis of the Factors Affecting the Face Instability of a River-Crossing Shield Tunnel of the Nanjing Metro
 
(1 State Key Laboratory for Explosion & Impact and Disaster Prevention & Mitigation, PLA University of Science and Technology, Nanjing 210007; 2 Nanjing Subway Co. Ltd., Nanjing 210007)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract  By way of systematic analysis of the risk factors resulting in instability of the tunnel face during shield construction, it was found that large deviation of the slurry pressure from the actual lateral static water-soil pressure is the main reason for large settlement or collapse at the working face. The concept of an ultimate support stress ratio and the judgment criteria for instability are presented and a quantitative description concerning the factors affecting the stability of the tunnel face is carried out. Using the river-crossing tunnel of the Nanjing Metro line 10 as an example, the affects of buried depth, river depth, and soil parameters (cohesion, internal friction angle) on the instability of the working face are studied by a Mohr-Coulomb model, which is commonly used in geotechnical engineering, and a 3D numerical analysis method. Considering the river water, the influence of varied groundwater head heights is also studied.
Service
Email this article River-crossing tunnel; Slurry balance shield; Ultimate support stress; Slurry pressure; Numerical analysis”. Please open it by linking:" name=neirong>
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsRiver-crossing tunnel')" href="#">     
Abstract:  By way of systematic analysis of the risk factors resulting in instability of the tunnel face during shield construction, it was found that large deviation of the slurry pressure from the actual lateral static water-soil pressure is the main reason for large settlement or collapse at the working face. The concept of an ultimate support stress ratio and the judgment criteria for instability are presented and a quantitative description concerning the factors affecting the stability of the tunnel face is carried out. Using the river-crossing tunnel of the Nanjing Metro line 10 as an example, the affects of buried depth, river depth, and soil parameters (cohesion, internal friction angle) on the instability of the working face are studied by a Mohr-Coulomb model, which is commonly used in geotechnical engineering, and a 3D numerical analysis method. Considering the river water, the influence of varied groundwater head heights is also studied.
KeywordsRiver-crossing tunnel')" href="#">     
Cite this article:   
.Quantitative Analysis of the Factors Affecting the Face Instability of a River-Crossing Shield Tunnel of the Nanjing Metro[J]  MODERN TUNNELLING TECHNOLOGY, 2013,V50(5): 112-117
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2013/V50/I5/112
 
No references of article
[1] WANG Bo-1, GUO Xin-Xin-1, HE Chuan-1, WU De-Xing-2.[J]. MODERN TUNNELLING TECHNOLOGY, 2018,55(5): 1-10
[2] Tuo Yongfei, Guo Xiaohong.General Design and Key Technologies of the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 1-6
[3] Lin Xin1, Shu Heng1, Zhang Yaguo2, Yang Linsong1, Li Jin1, Guo Xiaohong1.Study of the Longitudial Profile Optimization of Large-Diameter Shield Tunnels in Mixed Ground with Very High Water Pressure[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 7-14
[4] Yao Zhanhu1, Yang Zhao2, Tian Yi1, Hu Huitao1.Key Construction Technology for the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 15-23
[5] Li Xinyu, Zhang Dingli, Fang Qian, Song Haoran.On Water Burst Patterns in Underwater Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 24-31
[6] Shu Heng, Wu Shuyuan, Li Jian, Guo Xiaohong.Health Monitoring Design for Extra-Large Diameter Underwater Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 32-40
[7] Liu Guangfeng1, Chen Fangwei2, Zhou Zhi1, Zhang Shilong3, Liu Mingqiang1.Identification of Investment Risks for River-Crossing Tunnels Based on Grey Fuzzy Multi-Attribute Group Decision Making[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 41-48
[8] Yao Zhanhu.Construction Risk Assessment for the Shield-Driven Section of the Nanjing Weisan Road River-Crossing Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 49-54
[9] Zhang Boyang1, Zhao Xiaopeng1, Zhang Yaguo2, Chen Yu1.Risk Control for Saturated Hyperbaric Intervention in Slurry Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 55-61
[10] Li Yufeng1,2, Peng Limin1, Lei Mingfeng1,2.Dynamics Issues Regarding High-Speed Railway Crossing Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 8-15
[11] Zhang Han1,2, Li Yingming1,3, Ren Fangtao2, Yang Mingdong3.Elasto-Plastic Analysis of the Surrounding Rock of a Tunnel/Roadway Based on the Zienkiewicz-Pande Criterion[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 30-35
[12] Zhou Zelin, Chen Shougen, Li Yansong.Study of the Mechanical Characteristics of the Support Structure of a Deeply Buried Diversion Tunnel in Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 36-43
[13] Jin Dalong, Li Xinggao.Model Test of the Relationship between the Face Support Pressure and Ground Surface Deformation of a Shield-Driven Tunnel in Sand Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 44-51
[14] Wang Yaqiong1,2, Zhou Shaowen1, Sun Tiejun3, Xie Yongli1.A Diagnosis Method for Lining Structure Conditions of Operated Tunnels Based on Asymmetric Closeness Degree[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 52-58
[15] Ji Xinbo1, Zhao Wen1, Han Jianyong1, Zhou Yongwei2, Yu Hongfu3.Parameter Analysis Considering the Impacts of the Support Structure on Ground Settlement and Inner Force During Center Drift Construction[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 59-66
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY