Monitoring and measurement,Mechanical parameter of rock mass,Undersea tunnel," /> Normal Calculation Back Analysis of Dynamic Incremental Displacement and its Application in Tunnel Engineering
 
   Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2014, Vol. 51 Issue (6) :78-82    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Normal Calculation Back Analysis of Dynamic Incremental Displacement and its Application in Tunnel Engineering
(1 Geotechnical and Structure Engineering Research Center, Shandong University, Jinan 250061; 2 Jinan Engineering Vocational Technical College, Jinan 250020)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In order to optimize the inversion method for physical and mechanical parameters of tunnel surrounding rock and to improve the computational speed, normal calculation back analysis for dynamic incremental displacement in tunnel engineering is presented in this paper and applied in the Jiaozhou Bay subsea tunnel in Qingdao. With the establishment of an inversion prediction model of elastic-plastic dynamic incremental displacement, and the improvement of traditional elastic-plastic forward-optimized back analysis method, a construction process based inversion normal calculation back analysis of linear elastic dynamic incremental displacement is derived that is used for simplified analysis. A comparison is carried out regarding the calculated displacement and actual displacement in three construction sections of the Jiaozhou Bay subsea tunnel. Study results show that dynamic incremental displacement inversion normal calculation back analysis can reflect the increment measure information in any construction stage during dynamic construction, and guarantee the implementation of deformation control techniques; compared with the traditional elastic-plastic forward-optimized back analysis method, the proposed one increases efficiency and ensures calculation accuracy.
Service
Email this article Monitoring and measurement; Mechanical parameter of rock mass; Undersea tunnel

”. Please open it by linking:" name=neirong>
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
ZHAO Cheng-Long-1
2
LI Shu-Cai-1
XU Bang-Shu-1
ZHANG Le-Wen-1
KeywordsDynamic incremental displacement   Normal calculation back analysis   font-family: "Calibri","sans-serif"   mso-bidi-font-size: 11.0pt   mso-fareast-font-family: 宋体   mso-bidi-font-family: "Times New Roman"   mso-font-kerning: 1.0pt   mso-ansi-language: EN-US   mso-fareast-language: ZH-CN   Monitoring and measurement')" href="#">mso-bidi-language: AR-SA">Monitoring and measurement   Mechanical parameter of rock mass   Undersea tunnel     
Abstract: In order to optimize the inversion method for physical and mechanical parameters of tunnel surrounding rock and to improve the computational speed, normal calculation back analysis for dynamic incremental displacement in tunnel engineering is presented in this paper and applied in the Jiaozhou Bay subsea tunnel in Qingdao. With the establishment of an inversion prediction model of elastic-plastic dynamic incremental displacement, and the improvement of traditional elastic-plastic forward-optimized back analysis method, a construction process based inversion normal calculation back analysis of linear elastic dynamic incremental displacement is derived that is used for simplified analysis. A comparison is carried out regarding the calculated displacement and actual displacement in three construction sections of the Jiaozhou Bay subsea tunnel. Study results show that dynamic incremental displacement inversion normal calculation back analysis can reflect the increment measure information in any construction stage during dynamic construction, and guarantee the implementation of deformation control techniques; compared with the traditional elastic-plastic forward-optimized back analysis method, the proposed one increases efficiency and ensures calculation accuracy.
KeywordsDynamic incremental displacement,   Normal calculation back analysis,   font-family: "Calibri","sans-serif",   mso-bidi-font-size: 11.0pt,   mso-fareast-font-family: 宋体,   mso-bidi-font-family: "Times New Roman",   mso-font-kerning: 1.0pt,   mso-ansi-language: EN-US,   mso-fareast-language: ZH-CN,   Monitoring and measurement')" href="#">mso-bidi-language: AR-SA">Monitoring and measurement,   Mechanical parameter of rock mass,   Undersea tunnel     
published: 2013-08-29
Cite this article:   
ZHAO Cheng-Long-1, 2 , LI Shu-Cai-1 etc .Normal Calculation Back Analysis of Dynamic Incremental Displacement and its Application in Tunnel Engineering[J]  MODERN TUNNELLING TECHNOLOGY, 2014,V51(6): 78-82
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2014/V51/I6/78
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY