Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2015, Vol. 52 Issue (5) :184-191    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Cutting Performance of Shield Cutters in Soft Rock
(1 State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083; 2 College of Mechanical and Electrical Engineering, Central South University, Changsha Hunan 410083; 3 School of Mechanical Engineering, Xiangtan University, Xiangtan 411105)
Download: PDF (1131KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Based on the rational simplification of the cutting process of shield cutters in soft rock, this paper establishes a 2D numerical model using the particle discrete element method; analyzes a dynamic cutting process; and studies the influence of the rake angle, cutting depth and rock joint on the rock-breaking performance of shield cutters. The results show that cutting the soft rock is a process of "extruding and then tensioning." The force application point of a cutter is gradually shifted from the tip of the cutter to the front edge of the cutter, and then back to the tip of the cutter with variations of the cutting stroke, which is consistent with the change of the cutter force. With the increase of the cutter's rake angle and cutting depth, the broken rock block increases while the specific energy consumption decreases. The rock-breaking modes of the cutter are different under different joint dip angles, and because of more easily forming the broken rock block the rock-breaking efficiency is higher under a joint angle of less than 90° than a joint angle of more than or equal to 90°. The experiments show that the actual process of rock breaking and the force applied on the cutter agree well with those determined via numerical simulation.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsShield   Cutter   PFC 2D discrete-element software   Cutting performances   Specific energy consumption   Rock joint     
Abstract: Based on the rational simplification of the cutting process of shield cutters in soft rock, this paper establishes a 2D numerical model using the particle discrete element method; analyzes a dynamic cutting process; and studies the influence of the rake angle, cutting depth and rock joint on the rock-breaking performance of shield cutters. The results show that cutting the soft rock is a process of "extruding and then tensioning." The force application point of a cutter is gradually shifted from the tip of the cutter to the front edge of the cutter, and then back to the tip of the cutter with variations of the cutting stroke, which is consistent with the change of the cutter force. With the increase of the cutter's rake angle and cutting depth, the broken rock block increases while the specific energy consumption decreases. The rock-breaking modes of the cutter are different under different joint dip angles, and because of more easily forming the broken rock block the rock-breaking efficiency is higher under a joint angle of less than 90° than a joint angle of more than or equal to 90°. The experiments show that the actual process of rock breaking and the force applied on the cutter agree well with those determined via numerical simulation.
KeywordsShield,   Cutter,   PFC 2D discrete-element software,   Cutting performances,   Specific energy consumption,   Rock joint     
Cite this article:   
.Cutting Performance of Shield Cutters in Soft Rock[J]  MODERN TUNNELLING TECHNOLOGY, 2015,V52(5): 184-191
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2015/V52/I5/184
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY