Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2016, Vol. 53 Issue (3) :26-32    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Development and Application of an Integrated Scale Model System of Tunnel Lighting Based on Reaction Time
(1 State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074; 2 College of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074; 3 Chongqing Communications Planning Survey & Design Institute, Chongqing 401121)
Download: PDF (3028KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Reaction time is an important index for the evaluation of safety regarding tunnel lighting. The existing tunnel lighting design method can be optimized by measuring reaction time for different lighting conditions. Focusing on reaction time research, a scale model was developed for an innovative integrated system of tunnel lighting that can simulate real driving visuals and the luminous environment inside a tunnel based on eye tracking technology. The system was used to test reaction times for different luminosities, uniformities and lamp elevation angles, and the results show that: 1) the influences of tunnel road luminance on reaction time are consist with the Weber-Fechner law, and the testers have shorter reaction times when the contrast is 0.6; 2) compared with the recognition time, the detection time is more sensitive to road luminance uniformity, so the higher the road luminance uniformity the more unfavorable the reaction time; 3) a high lamp elevation angle induces glare and prolongs the reaction time. The innovative development of this integrated tunnel lighting scale model system provides effective experimental conditions for the research of the influences of tunnel lighting parameters on a driver′s reaction time, and is therefore valuable and applicable to domestic tunnel lighting projects.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsTunnel lighting   Driving vision task   Scale model   Reaction time   Visual performance     
Abstract: Reaction time is an important index for the evaluation of safety regarding tunnel lighting. The existing tunnel lighting design method can be optimized by measuring reaction time for different lighting conditions. Focusing on reaction time research, a scale model was developed for an innovative integrated system of tunnel lighting that can simulate real driving visuals and the luminous environment inside a tunnel based on eye tracking technology. The system was used to test reaction times for different luminosities, uniformities and lamp elevation angles, and the results show that: 1) the influences of tunnel road luminance on reaction time are consist with the Weber-Fechner law, and the testers have shorter reaction times when the contrast is 0.6; 2) compared with the recognition time, the detection time is more sensitive to road luminance uniformity, so the higher the road luminance uniformity the more unfavorable the reaction time; 3) a high lamp elevation angle induces glare and prolongs the reaction time. The innovative development of this integrated tunnel lighting scale model system provides effective experimental conditions for the research of the influences of tunnel lighting parameters on a driver′s reaction time, and is therefore valuable and applicable to domestic tunnel lighting projects.
KeywordsTunnel lighting,   Driving vision task,   Scale model,   Reaction time,   Visual performance     
Cite this article:   
.Development and Application of an Integrated Scale Model System of Tunnel Lighting Based on Reaction Time[J]  MODERN TUNNELLING TECHNOLOGY, 2016,V53(3): 26-32
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2016/V53/I3/26
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY