Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2016, Vol. 53 Issue (4) :172-178    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Design of Dewatering Plan for Trapped Shield in Water-Rich Sand Stratum and Its Effect Analysis
(1 Jinan Rail Transit Group Co., Ltd., Jinan 250101; 2 Key Laboratory of Road and Traffic Engineering of Education Ministry, Tongji University, Shanghai 201804; 3 Communication & Signal Engineering and Urban Rail Transit Engineering Co., Ltd., China Railway 5th Bureau Group Co., Changsha 410205)
Download: PDF (2978KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract In order to release the shield trapped in the consolidated water-rich sand stratum in a Shenzhen subway tunnel, the waterproof curtain by three-axis mixing piles was used to surround the shield in construction site, and the dewatering wells were laid out inside and outside the curtain for drainage. When the water level is down to the bottom of the shield machine, the chamber would be cleaned by hand. The theoretical dewatering arithmetic was used to calculate parameters such as the water inflow due to dewatering inside and outside the curtain and its influence radius, the number and spacing of dewatering wells, as well as the surface subsidence induced by drainage.Based on the relative reasonable initial design scheme of dewatering wells, a numerical simulation was carried out for further confirmation of the rationality and feasibility of the design scheme. The successful practice at site shows that it is very effective to dewater and release the trapped shield by the method combining theoretical arithmetic and numerical simulation, providing a reference to similar projects.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
TANG Zhuo-Hua- 1 Yang-Xin-An- 2 Xu-Qian-Wei- 2 Gong-Zhen-Yu- 3 Li- Zhou- 3 Zhu-Xue-Chun- 3
KeywordsShield releasing   Waterproof curtain   Dewatering scheme   Water inflow   Surface subsidence     
Abstract: In order to release the shield trapped in the consolidated water-rich sand stratum in a Shenzhen subway tunnel, the waterproof curtain by three-axis mixing piles was used to surround the shield in construction site, and the dewatering wells were laid out inside and outside the curtain for drainage. When the water level is down to the bottom of the shield machine, the chamber would be cleaned by hand. The theoretical dewatering arithmetic was used to calculate parameters such as the water inflow due to dewatering inside and outside the curtain and its influence radius, the number and spacing of dewatering wells, as well as the surface subsidence induced by drainage.Based on the relative reasonable initial design scheme of dewatering wells, a numerical simulation was carried out for further confirmation of the rationality and feasibility of the design scheme. The successful practice at site shows that it is very effective to dewater and release the trapped shield by the method combining theoretical arithmetic and numerical simulation, providing a reference to similar projects.
KeywordsShield releasing,   Waterproof curtain,   Dewatering scheme,   Water inflow,   Surface subsidence     
Cite this article:   
TANG Zhuo-Hua- 1 Yang-Xin-An- 2 Xu-Qian-Wei- 2 Gong-Zhen-Yu- 3 Li- Zhou- 3 Zhu-Xue-Chun- 3 .Design of Dewatering Plan for Trapped Shield in Water-Rich Sand Stratum and Its Effect Analysis[J]  MODERN TUNNELLING TECHNOLOGY, 2016,V53(4): 172-178
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2016/V53/I4/172
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY