Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2016, Vol. 53 Issue (6) :55-66    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Simplified Solution for Tunnelling-Induced Pile Foundation Deformation Based on the Kerr Foundation Model
(1 Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Land and Resources, Fuzhou 350002; 2 School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093; 3 State Key Laboratory of Building Safety and Environment, China Academy of Building Research, Beijing 100013; 4 State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059)
Download: PDF (5355KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract The elastic subgrade reaction method based on the Winkler foundation model is widely used in the anal? ysis of laterally loaded piles. However, the shearing action in the foundation soil mass is neglected in this model. For this reason, the free-field soil mass displacements induced by tunnelling were calculated using the cylinder cavity contraction theory, which is more accurate than the Loganathan & Poulos (1998) solution. Then, based on the Kerr foundation model, which fully considers the shearing behaviors of the soil mass, the free-field soil displacement was applied to the pile foundation and a simplified solution for pile foundation deformation under the disturbance of passive displacements was established. The calculated results of the soil mass free-field displacements and pile deformations were compared with existing calculated results, 3D FEM numerical simulation results and measured data,and consistency was achieved with the cylinder cavity contraction theory proven to be more accurate. Finally, relative parameters of the Kerr foundation model, pile diameters, ground loss ratio and spacing of the pile and tunnel were analyzed. The results show that the thickness of the shear layer and pile diameter are inversely proportion to the pile′s lateral displacement; the ground spring parameter, ground loss ratio and spacing between the pile and tun? nel are proportional to the lateral displacement of the pile foundation; and when the thickness of the shear layer is zero, the foundation model degenerates into a Winkler foundation model, while the foundation spring parameters set as infinity means the foundation model degenerates into a Pasternak foundation model
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
ZHANG Zhi-Guo- 1
2
3
4 Lu-Ming-Hao- 2 Xu- Chen- 2 Gong-Jian-Fei- 3 Zhao-Qi-Hua- 4
KeywordsTunnel construction   Pile foundation deformation   Cylinder cavity contraction theory   Kerr foundation model   Simplified solution     
Abstract: The elastic subgrade reaction method based on the Winkler foundation model is widely used in the anal? ysis of laterally loaded piles. However, the shearing action in the foundation soil mass is neglected in this model. For this reason, the free-field soil mass displacements induced by tunnelling were calculated using the cylinder cavity contraction theory, which is more accurate than the Loganathan & Poulos (1998) solution. Then, based on the Kerr foundation model, which fully considers the shearing behaviors of the soil mass, the free-field soil displacement was applied to the pile foundation and a simplified solution for pile foundation deformation under the disturbance of passive displacements was established. The calculated results of the soil mass free-field displacements and pile deformations were compared with existing calculated results, 3D FEM numerical simulation results and measured data,and consistency was achieved with the cylinder cavity contraction theory proven to be more accurate. Finally, relative parameters of the Kerr foundation model, pile diameters, ground loss ratio and spacing of the pile and tunnel were analyzed. The results show that the thickness of the shear layer and pile diameter are inversely proportion to the pile′s lateral displacement; the ground spring parameter, ground loss ratio and spacing between the pile and tun? nel are proportional to the lateral displacement of the pile foundation; and when the thickness of the shear layer is zero, the foundation model degenerates into a Winkler foundation model, while the foundation spring parameters set as infinity means the foundation model degenerates into a Pasternak foundation model
KeywordsTunnel construction,   Pile foundation deformation,   Cylinder cavity contraction theory,   Kerr foundation model,   Simplified solution     
Cite this article:   
ZHANG Zhi-Guo- 1, 2 , 3 etc .Simplified Solution for Tunnelling-Induced Pile Foundation Deformation Based on the Kerr Foundation Model[J]  MODERN TUNNELLING TECHNOLOGY, 2016,V53(6): 55-66
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2016/V53/I6/55
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY