Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2016, Vol. 53 Issue (6) :182-189    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Test of Thixotropic Slurry Properties and Study of Resistance-Reducing Technology for Pipe Jacking Tunnel Construction
(1 China Railway Tunnel Group Co. Ltd., Luoyang 471000; 2 School of Civil Engineering of Southwest Jiaotong University, Chengdu 610031; 3 Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Chengdu 610031)
Download: PDF (2685KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Based on the Hongzhuanlu jacking pipe tunnel project underneath Zhongzhou Avenue in Zhengzhou City, we studied the influence of changing contents of materials—including bentonite, CMC, soda ash and PHP—on the properties of a thixotropic slurry, then determined its mix proportions. Furthermore, we also studied the technologies of slurry preparation, grouting equipment selection, grouting parameter design, the arrangement of grouting holes, synchronous grouting and secondary grouting and surface waxing of tunnel elements per the situation of field construction. The theoretical calculation and field testing showed that after applying resistance reducing technologies the values of the maximum jacking force and the average friction resistance coefficient for the vehicle tunnel tube with a large cross section is reduced by 56.3% and 62.3%, respectively, and 56.7% and 60.9% for the non-vehicle tunnel tube with a small cross section, which indicates that these technologies are effective
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
WANG Ming-Sheng- 1 Liu-Da-Gang- 2
3
KeywordsThixotropic slurry   Rectangular pipe-jacking tunnel   Property test of thixotropic slurry   Effect of resis? tance reducing     
Abstract: Based on the Hongzhuanlu jacking pipe tunnel project underneath Zhongzhou Avenue in Zhengzhou City, we studied the influence of changing contents of materials—including bentonite, CMC, soda ash and PHP—on the properties of a thixotropic slurry, then determined its mix proportions. Furthermore, we also studied the technologies of slurry preparation, grouting equipment selection, grouting parameter design, the arrangement of grouting holes, synchronous grouting and secondary grouting and surface waxing of tunnel elements per the situation of field construction. The theoretical calculation and field testing showed that after applying resistance reducing technologies the values of the maximum jacking force and the average friction resistance coefficient for the vehicle tunnel tube with a large cross section is reduced by 56.3% and 62.3%, respectively, and 56.7% and 60.9% for the non-vehicle tunnel tube with a small cross section, which indicates that these technologies are effective
KeywordsThixotropic slurry,   Rectangular pipe-jacking tunnel,   Property test of thixotropic slurry,   Effect of resis? tance reducing     
Cite this article:   
WANG Ming-Sheng- 1 Liu-Da-Gang- 2, 3 .Test of Thixotropic Slurry Properties and Study of Resistance-Reducing Technology for Pipe Jacking Tunnel Construction[J]  MODERN TUNNELLING TECHNOLOGY, 2016,V53(6): 182-189
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2016/V53/I6/182
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY