Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2017, Vol. 54 Issue (4) :91-96    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Sensitivity Analysis of the Effect of Depth and Slope Gradient on the Surrounding Rock Stability for Shallow-Buried Tunnels
(1 Department of Resources and Civil Engineering, Shandong University of Science and Technology, Tai′an 271019; 2 Key Laboratoryof Safety and High-efficiency Coal Mining, Ministry of Education, Anhui University of Science and Technology, Huainan 232001)
Download: PDF (5387KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Guide null
Abstract The sensitivity analysis of the effects of buried depth and slope gradient on surrounding rock stability is very important for alignment selection and the determination of a construction scheme for a shallow-buried tunnel.The deformation rules of surrounding rock under different bias angles and buried depths have been analyzed in previous work, and based on this, a sensitivity analysis is proposed to study the sensitivity of the effects of tunnel overburden and slope gradient on the stability of surrounding rock (surface settlement, vault settlement and plastic zone distribution). The results show the surface settlement and vault settlement are relatively sensitive to tunnel overburden but not so sensitive to the bias angle; as for the plastic zone area, it is more sensitive to the bias angle than the buried depth of tunnel.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
Keywords:   
Abstract: The sensitivity analysis of the effects of buried depth and slope gradient on surrounding rock stability is very important for alignment selection and the determination of a construction scheme for a shallow-buried tunnel.The deformation rules of surrounding rock under different bias angles and buried depths have been analyzed in previous work, and based on this, a sensitivity analysis is proposed to study the sensitivity of the effects of tunnel overburden and slope gradient on the stability of surrounding rock (surface settlement, vault settlement and plastic zone distribution). The results show the surface settlement and vault settlement are relatively sensitive to tunnel overburden but not so sensitive to the bias angle; as for the plastic zone area, it is more sensitive to the bias angle than the buried depth of tunnel.
Keywords:   
Fund:

null

Cite this article:   
.Sensitivity Analysis of the Effect of Depth and Slope Gradient on the Surrounding Rock Stability for Shallow-Buried Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(4): 91-96
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2017/V54/I4/91
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY