Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2017, Vol. 54 Issue (5) :1-12    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Tunnels and Underground Works for Hydropower Projects
(Department of Geotechnology and Petroleum, Norwegian University of Science & Technology, Trondheim NO-7491)
Download: PDF (6276KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract During the last decades there has, on a worldwide scale, been considerable development in tunnelling technology and an increase in the use of the underground for various purposes. This has had an important influence not least on the hydropower industry. The paper describes the design of the cost saving unlined high pressure tunnels and shafts. Also the technology behind the unlined air cushion replacing the surge chamber is described and the potential for applying this technology for underground gas storage is shown. The use of heavy rock anchors for roof stabilization in underground powerhouses is discussed based on theoretical studies and real cases. Selected examples of stability problems in tunnels caused by slaking basalts, friable sandstones and swelling shales are described. The concluding remarks demonstrate that with a good understanding of rock masses and their behaviour,there are considerable advantages in using the underground for hydropower projects as well as for other projects.Structures should be made safe enough for their purpose, but overly conservative support should be avoided as this adds unnecessary costs to the projects.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
KeywordsHydraulic tunnel and underground works   Design and construction technology   Unlined high pressure tunnels and shafts   Unlined air cushion surge chamber   Underground gas storage cavern   Roof stabilization   Case study     
Abstract: During the last decades there has, on a worldwide scale, been considerable development in tunnelling technology and an increase in the use of the underground for various purposes. This has had an important influence not least on the hydropower industry. The paper describes the design of the cost saving unlined high pressure tunnels and shafts. Also the technology behind the unlined air cushion replacing the surge chamber is described and the potential for applying this technology for underground gas storage is shown. The use of heavy rock anchors for roof stabilization in underground powerhouses is discussed based on theoretical studies and real cases. Selected examples of stability problems in tunnels caused by slaking basalts, friable sandstones and swelling shales are described. The concluding remarks demonstrate that with a good understanding of rock masses and their behaviour,there are considerable advantages in using the underground for hydropower projects as well as for other projects.Structures should be made safe enough for their purpose, but overly conservative support should be avoided as this adds unnecessary costs to the projects.
KeywordsHydraulic tunnel and underground works,   Design and construction technology,   Unlined high pressure tunnels and shafts,   Unlined air cushion surge chamber,   Underground gas storage cavern,   Roof stabilization,   Case study     
Cite this article:   
.Tunnels and Underground Works for Hydropower Projects[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(5): 1-12
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2017/V54/I5/1
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY