Abstract It is believed that certain potential environment conditions may induce water bursts and mud gushing, and certain precursory information is often noticed before these kinds of geological hazards occur. Based on engineering practice, case investigation and theoretical analysis, this paper systematically studies the occurrence rule of water inflow and mud gushing in karst tunnels, determines the inherent meaning of occurrence conditions (e.g., a water-bearing structure with pressure, a migration pathway and an external disturbance), divides them into five types of water inflow: water inflow in a fault fracture zone, water inflow in a karst cavity and pond, water inflow in a waterrich fracture, water inflow in contact zone between soluble and dissoluble rock layers, water inflow in an underground river and a karst conduit. By studying the geological and geophysical precursors to water inflow and water bursts, a comprehensive precursory information identification system is established for water inflow and water bursts and is successfully applied in the Shangjiawan Tunnel, avoiding casualties and reducing economic loss.
Abstract:
It is believed that certain potential environment conditions may induce water bursts and mud gushing, and certain precursory information is often noticed before these kinds of geological hazards occur. Based on engineering practice, case investigation and theoretical analysis, this paper systematically studies the occurrence rule of water inflow and mud gushing in karst tunnels, determines the inherent meaning of occurrence conditions (e.g., a water-bearing structure with pressure, a migration pathway and an external disturbance), divides them into five types of water inflow: water inflow in a fault fracture zone, water inflow in a karst cavity and pond, water inflow in a waterrich fracture, water inflow in contact zone between soluble and dissoluble rock layers, water inflow in an underground river and a karst conduit. By studying the geological and geophysical precursors to water inflow and water bursts, a comprehensive precursory information identification system is established for water inflow and water bursts and is successfully applied in the Shangjiawan Tunnel, avoiding casualties and reducing economic loss.
.Identification of Geological Structures and Precursory Information Likely to Cause Water Inflow in Karst Tunnels[J] MODERN TUNNELLING TECHNOLOGY, 2018,V55(1): 36-44