现代隧道技术
 
    Home | About Journal |  Editorial Board |   |  Instruction |  Subscription |  Advertisement |   |  Download |  中文
 Office Online
  Search  
  Adv Search
2023, Vol. 60(4): 67-75    DOI:
Study on a Deep Learning-based Model for Detecting Apparent Defects in Shield Tunnel Lining
(1. China Energy Engineering Group Jiangsu Power Design Institute Co., Ltd., Nanjing 211102; 2. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092; 3. Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai 200092)
Received null  Revised null
Supporting info
Copyright © 2011  Editorial By MODERN TUNNELLING TECHNOLOGY
Supported by:Beijing Magtech Co.ltd  Email:support@magtech.com.cn