[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (4) :77-85    DOI:
“双碳背景下长大公路隧道智能通风照明理论及技术”专题 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
天山胜利隧道“TBM法+钻爆法”施工期间服务隧道粉尘浓度测试与分析
(1.中交中南工程局有限公司,长沙 410000;2.长安大学公路学院,西安 710064)
Measurement and Analysis of Dust Concentration in Service Tunnel during Construction of Tianshan Shengli Tunnel with "TBM Method + Drill and Blast Method"
(1. CCCC Central South Engineering Co. Ltd., Changsha 410000;2. School of Highway, Chang'an University,Xi'an 710064)
Download: PDF (5179KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 为探索高海拔超特长隧道在“TBM法+钻爆法”共同施工期间洞内气象条件和粉尘浓度时空分布规律,以乌尉高速公路天山胜利隧道为依托,通过现场监测分析洞内风速、风向、气压、温湿度等气象参数时变规律与粉尘浓度时空特性,对比分析不同工况(爆破期间与非爆破期间)下服务隧道和联络通道粉尘浓度分布特征,揭示多工作面条件下服务隧道内粉尘沿程分布规律,探索不同位置工作面爆破对服务隧道及联络通道粉尘浓度的影响。研究结果表明:服务隧道和联络通道内温度、气压、湿度及粉尘浓度的时变规律基本一致,但风速和风向受断面过风面积和施工影响有所不同,联络通道风速较服务隧道风速波动大,受右洞近距离爆破冲击影响,联络通道内风向短期会发生变化,由服务隧道向联络通道排风转变为向服务隧道送风。服务隧道内粉尘浓度从洞口向洞内呈三个梯度递增,竖井自然排风效应显著。主洞非爆破时段,服务隧道中粉尘浓度基本稳定,PM2.5、PM10、PM100浓度分别维持在0.8 mg/m3、3.7 mg/m3、9.5 mg/m3水平,均满足隧道施工粉尘浓度阈值;主洞爆破时段,服务隧道内粉尘浓度急剧增加,PM2.5、PM10、PM100浓度达到峰值,分别高达1.4 mg/m3、6.9 mg/m3、21.3 mg/m3,该时段除PM2.5浓度未超标外,PM10、PM100 浓度均严重超过其容许浓度,超限比例分别为38%和113%,此时服务隧道应增大供风量为128.5 m3/s。在主洞未与联络通道相连阶段,风流需经过服务隧道排出,主洞爆破会同步驱动服务隧道和联络通道内粉尘浓度变化;当主洞与联络通道直接连通时,主洞爆破会显著影响联络通道内粉尘浓度,但对服务隧道内粉尘浓度影响较小。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
黄登侠1 罗彦斌2 赵志强2 陈建勋2 刘伟伟2 冯如兵1 吴特力根1
关键词天山胜利隧道   服务隧道   粉尘浓度   气象参数   TBM法+钻爆法     
Abstract: To explore the spatiotemporal distribution patterns of meteorological parameters and dust concentrations in a high-altitude super-long tunnel during the construction combined with the "TBM method + drill and blast method", this study is based on the Tianshan Shengli Tunnel on the Urumqi-Yuli Highway. On-site monitoring was conducted to analyze the time-varying patterns of meteorological parameters such as wind speed, wind direction, air pressure, temperature, and humidity, as well as the spatiotemporal characteristics of dust concentration. The distribution characteristics of dust concentration in the service tunnel and the connection passage under different working conditions (blasting and non-blasting periods) were compared and analyzed. The study revealed the distribution patterns of dust along the service tunnel under multiple working face conditions and explored the impact of blasting at different working face locations on the dust concentration in the service tunnel and connection passage. The results indicate that the time-varying patterns of temperature, air pressure, humidity, and dust concentration in the service tunnel and connection passage are consistent, but the wind speed and wind direction vary due to differences in cross-sectional ventilation area and construction impact. The wind speed in the connection passage fluctuates more than in the service tunnel. Impacted by close-range blasting in the right tunnel, the wind direction in the connection passage temporarily reverses from exhausting air to the connection passage to supplying air to the service tunnel.Dust concentration in the service tunnel increases in three gradients from the portal to the inside, with a significant natural ventilation effect from the shaft. During non-blasting periods in the main tunnel, dust concentrations in the service tunnel are stable, with PM2.5, PM10, and PM100 concentrations maintained at 0.8 mg/m3, 3.7 mg/m3, and 9.5mg/m3, respectively, meeting the dust concentration thresholds for tunnel construction. During blasting periods in the main tunnel, dust concentrations in the service tunnel increase sharply, peaking at 1.4 mg/m3 for PM2.5, 6.9 mg/m3 for PM10, and 21.3 mg/m3 for PM100. Except for PM2.5, concentrations of PM10 and PM100 exceed their allowable levels by 38% and 113%, respectively. And so the ventilation volume in the service tunnel should be increased to 128.5 m3/s.Before the main tunnel connects with the connection passage, airflow must be exhausted through the service tunnel,synchronously driving dust concentration changes in both the service tunnel and connection passage during main tunnel blasting. Once the main tunnel working face connects directly to the connection passage, the blasting in the main tunnel will significantly affect dust concentration in the connection passage but has a smaller impact on the service tunnel
KeywordsTianshan Shengli Tunnel,   Service tunnel,   Dust concentration,   Meteorological parameters,   TBM method+ drill and blast method     
基金资助:国家自然科学基金青年科学基金( 52208385);中交一公局集团项目(X-GL-QSGS(J)-XIJ-WY-05-JS-80);新疆维吾尔自治区重大科技专项(2020A03003-5).
作者简介: 黄登侠(1986-),男,高级工程师,主要从事隧道工程建设与管理工作,E-mail:276837427@qq.com. 通讯作者:罗彦斌(1980-),男,博士,教授,博士生导师,主要从事隧道及地下工程领域的教学和科研工作,E-mail:lyb@chd.edu.cn.
引用本文:   
黄登侠1 罗彦斌2 赵志强2 陈建勋2 刘伟伟2 冯如兵1 吴特力根1 .天山胜利隧道“TBM法+钻爆法”施工期间服务隧道粉尘浓度测试与分析[J]  现代隧道技术, 2024,V61(4): 77-85
HUANG Dengxia1 LUO Yanbin2 ZHAO Zhiqiang2 CHEN Jianxun2 LIU Weiwei2 FENG Rubing1 WU Teligen1 .Measurement and Analysis of Dust Concentration in Service Tunnel during Construction of Tianshan Shengli Tunnel with "TBM Method + Drill and Blast Method"[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(4): 77-85
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I4/77
 
没有本文参考文献
Copyright 2010 by 现代隧道技术