[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (4) :221-231    DOI:
试验与监测 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
成都地铁运营区间隧道颗粒物成分及浓度分析
(1.西南交通大学土木工程学院,成都 610031;2.西南交通大学 交通隧道工程教育部重点实验室,成都 610031;3. 遂宁市水利局,遂宁 628017;4.西南交通大学交通运输学院,成都 610031)
Analysis of the Composition and Concentration of Particulate Matters in Chengdu Operational Metro Running Tunnels
(1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031; 2. Key Laboratory of Traffic Tunnel Engineering,Ministry of Education, Southwest Jiaotong University, Chengdu 610031; 3. Suining Water Conservancy Bureau, Suining 628017;4. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031)
Download: PDF (6732KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 地铁运营过程中在区间隧道产生的污染物会通过风亭排放到大气中,为了解地铁区间隧道颗粒物浓度分布、成分及形貌特征等,依托四川省成都市4个典型的地铁站,采用激光粉尘检测仪对4个站点的活塞风亭处颗粒物浓度进行现场测试,采集颗粒物样品进行扫描电镜和能谱分析确定颗粒物来源,并运用皮尔逊系数进行区间隧道与周围环境相关性分析。研究结果表明:地铁经过区间隧道产生的颗粒物形态多为球状、棱角状等,所含元素主要为Fe、Al、Ba、Zn等金属元素,其主要来源为地铁运行过程中轨道与车轮、制动器之间以及地铁车辆的受电弓与供电的接触网之间界面处的机械损耗和摩擦;PM10浓度远高于PM1及PM2.5浓度,且各粒径颗粒物浓度无明显关系;地铁区间隧道颗粒物浓度受季节影响较大,冬季产生的PM2.5、PM10浓度值高于其他季节,且PM10排放浓度超标;4个站点各PM指标的皮尔逊相关系数r均大于0.8,风亭处污染物浓度与周边环境大气污染程度高度线性相关。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
赵树磊1
2 张 科3 董 晨4 陈 政1
2 郭 春1
2
关键词成都地铁   区间隧道   活塞风亭   可吸入颗粒物   成分分析     
Abstract: During metro train operation, the pollutants generated in the running tunnels will be emitted into the at? mosphere through ventilation pavilions. To understand the concentration distribution, composition, and morphological characteristics of particulate matters in metro running tunnels, a study was conducted based on four typical metro stations in Chengdu, Sichuan Province. The laser dust detector was used for on-site testing of particulate matter concentrations at the piston wind pavilions of the four stations. Particulate matter samples were collected for scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis to determine their sources. Pearson correlation coefficients were used to analyze the relationship between the running tunnel and ambient environmental conditions. The results show that the particulate matters generated by the train passing through metro running tunnels are mostly spherical or angular and so on, with elemental contents mainly consisting of metals such as Fe, Al, Ba, and Zn. These particles primarily originate from mechanical wear and friction at the interfaces between tracks and wheels, brakes, and the contact points between the pantograph and catenary during metro train operation. The concentration of PM10 is much higher than that of PM1 and PM2.5, with no significant correlation between the concentrations of particulate matters with different particle sizes. The particulate matter concentration in metro running tunnels is significantly influenced by the season, with PM2.5 and PM10 levels higher in winter than in other seasons,and PM10 emissions exceeding the standard limits. The Pearson correlation coefficients r for PM indicators at the four stations are all greater than 0.8, indicating a high linear correlation between the pollutant concentrations at the ventilation pavilions and the air pollution levels in surrounding environment.
KeywordsChengdu Metro,   Operational running tunnels,   Piston wind pavilion,   Inhalable particulate matter,   Compo? sition analysis     
基金资助:四川省社会科学规划项目(SC22B031);四川省教育科研资助金项目(SCJG20A120);四川省交通运输科技项目(2021-ZL-04);成都医学院四川应用心理学研究中心资助项目(CSXL-23327).
作者简介: 赵树磊(1997-),男,博士研究生,主要从事隧道通风及环境控制的研究工作,E-mail:zahoshulei_cq@163.com. 通讯作者:郭 春(1979-),男,博士,教授,博士生导师,主要从事隧道及地下工程领域的教学与研究工作,E-mail: guochun@swjtu.edu.cn
引用本文:   
赵树磊1, 2 张 科3 董 晨4 陈 政1, 2 郭 春1等 .成都地铁运营区间隧道颗粒物成分及浓度分析[J]  现代隧道技术, 2024,V61(4): 221-231
ZHAO Shulei1, 2 ZHANG Ke3 DONG Chen? CHEN Zheng1, 2 GUO Chun1 etc .Analysis of the Composition and Concentration of Particulate Matters in Chengdu Operational Metro Running Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(4): 221-231
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I4/221
 
没有本文参考文献
[1] 蒋 频 李远富.基于主成分分析的地铁车站施工风险评估研究[J]. 现代隧道技术, 2021,58(1): 67-74
[2] 张峰瑞 1 姜谙男 1 赵 亮 2 陈 维 2 郭 阔 2.基于多变量GP-DE模型的隧道变形时间序列预测研究[J]. 现代隧道技术, 2021,58(1): 109-116
[3] 姚晓明 1 舒 波 2 李 波 1.新建盾构隧道近距离下穿既有地铁线的安全控制技术[J]. 现代隧道技术, 2020,57(5): 243-
[4] 张小林 1 蔡建华 2 廖烟开 2.成都地铁龙泉山隧道瓦斯赋存特征分析与预测评价[J]. 现代隧道技术, 2019,56(3): 25-30
[5] 王国富 1,2 路林海 1 李 强 1,2.区间隧道近距穿越高速公路桥头变形控制新技术研究[J]. 现代隧道技术, 2017,54(5): 217-223
[6] 郭建祥 王 兵 王晓军 杨金秋.成都地铁工程施工安全质量隐患排查要点探讨[J]. 现代隧道技术, 2017,54(1): 61-67
[7] 田海波.复杂条件下盾构接收综合技术研究[J]. 现代隧道技术, 2017,54(1): 198-203
[8] 曹智.中国中铁盾构在成都地铁砂卵石地层中的施工应用[J]. 现代隧道技术, 2014,51(2): 127-132
[9] 朱正国1,2 余剑涛1 朱永全1,2.区间隧道零距离下穿既有地铁车站施工方案研究[J]. 现代隧道技术, 2013,50(6): 124-130
[10] 李俊松1 张兴刚2.基于层次分析法的地铁区间隧道邻近公路桥的风险评估与专项设计[J]. 现代隧道技术, 2013,50(6): 152-157
[11] 闫瑞生.西安地铁永南区间隧道地表降水法设计与施工[J]. 现代隧道技术, 2013,50(3): 173-178
[12] 张维1, 邓勇2.南京地铁十号线越江隧道主要风险及措施研究[J]. 现代隧道技术, 2012,49(3): 154-160
[13] 冯超1, 王喆1, 潘娜娜2 .地铁隧道施工过古城墙的地表变形及控制措施[J]. 现代隧道技术, 2011,48(5): 143-147
Copyright 2010 by 现代隧道技术