[an error occurred while processing this directive]
 
       首 页  |  期刊介绍  |  编委会  |  投稿指南  |  期刊订阅  |  广告合作  |  留言板  |  联系我们 |  English
现代隧道技术 2024, Vol. 61 Issue (5) :120-128    DOI:
绿色智能建造 最新目录 | 下期目录 | 过刊浏览 | 高级检索 << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
基于TCN-LSTM的盾构刀盘扭矩实时预测研究
(1.中铁七局集团第三工程有限公司,西安 710000;2.河海大学岩土力学与堤坝工程教育部重点实验室,南京 210098;3.中山大学土木工程学院,珠海 519082;4.隧道工程灾变防控与智能建养全国重点实验室,广州 510275)
Research on Real-time Prediction of Shield Cutterhead Torque Based on TCN-LSTM
(1. The Third Engineering Co.,Ltd of China Railway Seventh Group, Xi′an 710000; 2. Key Laboratory for Geotechnical Engineering of Ministry of Water Resource, Hohai University, Nanjing 210098; 3. School of Civil Engineering, Sun Yat-sen University,Zhuhai 519082; 4. Key Laboratory for Tunnel Engineering,Guangzhou 510275)
Download: PDF (5771KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
摘要 盾构刀盘扭矩反映了刀盘与地层相互作用的力学特性,实时准确预测刀盘扭矩变化情况,可为掘进参数提前调整、机器平稳运行并减少刀具磨损提供保障。基于此,提出一种基于时间卷积网络(TCN)-长短时记忆网络(LSTM)的深度学习模型对刀盘扭矩进行实时预测研究。研究结果表明:TCN-LSTM模型能够捕捉输入参数的局部特征并建立长期依赖关系,相比于其他模型具有最高的预测精度;TCN-LSTM模型在多步预测中表现稳定,可以实现更长时间内的刀盘扭矩超前预测,按照4∶1∶1的比例划分数据集可以获得性能最优的预测模型。
Service
把本文推荐给朋友
加入我的书架
加入引用管理器
Email Alert
RSS
作者相关文章
冯 通1 胡锦健2 李 研1 张 箭2 梁 禹3
4 丰土根2
关键词刀盘扭矩   时间卷积网络   长短时记忆网络   多步预测   划分比例     
Abstract: The shield cutterhead torque reflects the mechanical interaction characteristics between the cutterhead and the stratum. Accurately predicting torque changes in real-time can help adjust tunnelling parameters in advance, ensure smooth machine operation, and reduce cutting tool wear. Therefore, this paper proposes a deep learning model based on Temporal Convolutional Network (TCN) and Long Short-Term Memory (LSTM) for real-time prediction of cutterhead torque. The results indicate that the TCN-LSTM model can capture the local features of the input parameters and establish long-term dependencies, achieving the highest prediction accuracy compared to other models. The model performs stably in multi-step predictions, enabling longer lead-time predictions of cutterhead torque. A 4∶1∶1 data set split ratio yields the optimal performance for the prediction model.
KeywordsCutterhead torque,   Temporal Convolutional Network,   Long Short-Term Memory Network,   Multi-step prediction,   Split ratio     
基金资助:国家自然科学基金项目(52378336, 52178386, 52378427).
作者简介: 冯 通(1991-),男,工程师,主要从事市政工程研究,E-mail:916375690@qq.com. 通讯作者:张 箭(1989-),男,博士,教授, 博士生导师,主要从事地下空间与隧道工程研究方面的工作,E-mail:zhangj0507@163.com.
引用本文:   
冯 通1 胡锦健2 李 研1 张 箭2 梁 禹3, 4 丰土根2 .基于TCN-LSTM的盾构刀盘扭矩实时预测研究[J]  现代隧道技术, 2024,V61(5): 120-128
FENG Tong1 HU Jinjian2 LI Yan1 ZHANG Jian2 LIANG Yu3, 4 FENG Tugen2 .Research on Real-time Prediction of Shield Cutterhead Torque Based on TCN-LSTM[J]  MODERN TUNNELLING TECHNOLOGY, 2024,V61(5): 120-128
链接本文:  
http://www.xdsdjs.com/CN/      或     http://www.xdsdjs.com/CN/Y2024/V61/I5/120
 
没有本文参考文献
Copyright 2010 by 现代隧道技术