Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2011, Vol. 48 Issue (6) :17-22    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Research on the Construction Solutions to Increase the lining Concrete Durability of Mountains Tunnel under Aggressive environments
(1 Southwest Jiaotong University School of Civil Engineering  Sichuan  610031;
2 Shijiazhuang Institute of Railway Technology  Hebei  050041)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Through the survey it is found that there is serious shortage of durability in existing mountain tunnel structures, and defects including cracking,leak, crystal dissolution and even concrete spalling of the arch in many tunnels’ second linings soon after the operation of these tunnels in China. Insufficiency of duability results from not only the design but also the construction. According to the representation of existing tunnels’ diseases, this paper analyses the construction reasons which result in the insufficient durability of the tunnels’ second linings, and proposes construction strategies to solve thelack of the second lining concrete durability of newly-built tunnel structure concrete. The specific measures are using multiple composite cementitious materials, adopting proper concrete mixing process, using low water-cement ratio, adopting small water usage and effective superplasticizer, using advanced pouring and vibrating technology, taking reasonable maintaining technology and forming removal and curing time. These measures may provide some references for new tunnels’ construction.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
WANG Hai-Yan-1
2
Chou-Wen-Ge-1
Feng-Ji-Meng-1
Keywords Mountains tunnel, Lining concrete, Durability, Construction reasons,    Main Solutions     
Abstract: Through the survey it is found that there is serious shortage of durability in existing mountain tunnel structures, and defects including cracking,leak, crystal dissolution and even concrete spalling of the arch in many tunnels’ second linings soon after the operation of these tunnels in China. Insufficiency of duability results from not only the design but also the construction. According to the representation of existing tunnels’ diseases, this paper analyses the construction reasons which result in the insufficient durability of the tunnels’ second linings, and proposes construction strategies to solve thelack of the second lining concrete durability of newly-built tunnel structure concrete. The specific measures are using multiple composite cementitious materials, adopting proper concrete mixing process, using low water-cement ratio, adopting small water usage and effective superplasticizer, using advanced pouring and vibrating technology, taking reasonable maintaining technology and forming removal and curing time. These measures may provide some references for new tunnels’ construction.
Keywords Mountains tunnel, Lining concrete, Durability, Construction reasons, ,   Main Solutions     
published: 2011-08-05
Cite this article:   
WANG Hai-Yan-1, 2 , Chou-Wen-Ge-1 etc .Research on the Construction Solutions to Increase the lining Concrete Durability of Mountains Tunnel under Aggressive environments[J]  MODERN TUNNELLING TECHNOLOGY, 2011,V48(6): 17-22
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2011/V48/I6/17
 
No references of article
[1] WANG Bo-1, GUO Xin-Xin-1, HE Chuan-1, WU De-Xing-2.[J]. MODERN TUNNELLING TECHNOLOGY, 2018,55(5): 1-10
[2] Tuo Yongfei, Guo Xiaohong.General Design and Key Technologies of the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 1-6
[3] Lin Xin1, Shu Heng1, Zhang Yaguo2, Yang Linsong1, Li Jin1, Guo Xiaohong1.Study of the Longitudial Profile Optimization of Large-Diameter Shield Tunnels in Mixed Ground with Very High Water Pressure[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 7-14
[4] Yao Zhanhu1, Yang Zhao2, Tian Yi1, Hu Huitao1.Key Construction Technology for the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 15-23
[5] Li Xinyu, Zhang Dingli, Fang Qian, Song Haoran.On Water Burst Patterns in Underwater Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 24-31
[6] Shu Heng, Wu Shuyuan, Li Jian, Guo Xiaohong.Health Monitoring Design for Extra-Large Diameter Underwater Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 32-40
[7] Liu Guangfeng1, Chen Fangwei2, Zhou Zhi1, Zhang Shilong3, Liu Mingqiang1.Identification of Investment Risks for River-Crossing Tunnels Based on Grey Fuzzy Multi-Attribute Group Decision Making[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 41-48
[8] Yao Zhanhu.Construction Risk Assessment for the Shield-Driven Section of the Nanjing Weisan Road River-Crossing Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 49-54
[9] Zhang Boyang1, Zhao Xiaopeng1, Zhang Yaguo2, Chen Yu1.Risk Control for Saturated Hyperbaric Intervention in Slurry Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 55-61
[10] Li Yufeng1,2, Peng Limin1, Lei Mingfeng1,2.Dynamics Issues Regarding High-Speed Railway Crossing Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 8-15
[11] Zhang Han1,2, Li Yingming1,3, Ren Fangtao2, Yang Mingdong3.Elasto-Plastic Analysis of the Surrounding Rock of a Tunnel/Roadway Based on the Zienkiewicz-Pande Criterion[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 30-35
[12] Zhou Zelin, Chen Shougen, Li Yansong.Study of the Mechanical Characteristics of the Support Structure of a Deeply Buried Diversion Tunnel in Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 36-43
[13] Jin Dalong, Li Xinggao.Model Test of the Relationship between the Face Support Pressure and Ground Surface Deformation of a Shield-Driven Tunnel in Sand Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 44-51
[14] Wang Yaqiong1,2, Zhou Shaowen1, Sun Tiejun3, Xie Yongli1.A Diagnosis Method for Lining Structure Conditions of Operated Tunnels Based on Asymmetric Closeness Degree[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 52-58
[15] Ji Xinbo1, Zhao Wen1, Han Jianyong1, Zhou Yongwei2, Yu Hongfu3.Parameter Analysis Considering the Impacts of the Support Structure on Ground Settlement and Inner Force During Center Drift Construction[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 59-66
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY