Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2012, Vol. 49 Issue (1) :78-83    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Research on the Origins of Lining Cracks in Double-Arch Tunnels During Construction
(1 Civil Engineering School of Shijiazhuang Tiedao University, Shijiazhuang 050043;
2 China Railway 20th Bureau Group Co., Ltd., Xian 710016)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract  This paper discusses the genesis of lining cracks in a double-arch tunnel during its construction. A qualitative analysis of the process, status, distribution and site treatment of crack damage was performed based on a site investigation, the analysis of construction process and the factors of topography and geology. In addition, this paper establishes a numerical model for analyzing the construction of the tunnel portal section with lining damage. Furthermore, it focuses on the distribution law of main stress inside of the lining structure considering the topographic conditions, parameters of the surrounding rock structure and construction procedures. Results show that the load is larger than the designed one locally due to bias load and that the geological structure is complex; the surrounding rock is loosening since the reinforcement is not adequate at the collapse area and it was disturbed often during the construction. All of these factors result in lining cracking. This paper theoretically explains the cracking mechanism and describes how it is consistent with the actual conditions.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
WANG Ning-1
Zhang-Li-Sheng-2
KeywordsDouble-arch tunnel   Lining damage   Crack genesis study     
Abstract:  This paper discusses the genesis of lining cracks in a double-arch tunnel during its construction. A qualitative analysis of the process, status, distribution and site treatment of crack damage was performed based on a site investigation, the analysis of construction process and the factors of topography and geology. In addition, this paper establishes a numerical model for analyzing the construction of the tunnel portal section with lining damage. Furthermore, it focuses on the distribution law of main stress inside of the lining structure considering the topographic conditions, parameters of the surrounding rock structure and construction procedures. Results show that the load is larger than the designed one locally due to bias load and that the geological structure is complex; the surrounding rock is loosening since the reinforcement is not adequate at the collapse area and it was disturbed often during the construction. All of these factors result in lining cracking. This paper theoretically explains the cracking mechanism and describes how it is consistent with the actual conditions.
KeywordsDouble-arch tunnel,   Lining damage,   Crack genesis study     
published: 2011-10-26
Cite this article:   
WANG Ning-1, Zhang-Li-Sheng-2 .Research on the Origins of Lining Cracks in Double-Arch Tunnels During Construction[J]  MODERN TUNNELLING TECHNOLOGY, 2012,V49(1): 78-83
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2012/V49/I1/78
 
No references of article
[1] ZI Xiaoyu1 SHEN Yusheng1 ZHU Shuangyan1 LUO Ningning2 YANG Jiaqi1 CAO Bangjun1.Study on the Deformation Failure Laws and Support Measures for Tunnels in Layered Phyllite[J]. MODERN TUNNELLING TECHNOLOGY, 2021,58(3): 196-204
[2] WANG Bo-1, GUO Xin-Xin-1, HE Chuan-1, WU De-Xing-2.[J]. MODERN TUNNELLING TECHNOLOGY, 2018,55(5): 1-10
[3] Shu Heng, Wu Shuyuan, Li Jian, Guo Xiaohong.Health Monitoring Design for Extra-Large Diameter Underwater Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 32-40
[4] Tuo Yongfei, Guo Xiaohong.General Design and Key Technologies of the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 1-6
[5] Lin Xin1, Shu Heng1, Zhang Yaguo2, Yang Linsong1, Li Jin1, Guo Xiaohong1.Study of the Longitudial Profile Optimization of Large-Diameter Shield Tunnels in Mixed Ground with Very High Water Pressure[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 7-14
[6] Yao Zhanhu1, Yang Zhao2, Tian Yi1, Hu Huitao1.Key Construction Technology for the Nanjing Weisan Road River-Crossing Tunnel Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 15-23
[7] Liu Guangfeng1, Chen Fangwei2, Zhou Zhi1, Zhang Shilong3, Liu Mingqiang1.Identification of Investment Risks for River-Crossing Tunnels Based on Grey Fuzzy Multi-Attribute Group Decision Making[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 41-48
[8] Yao Zhanhu.Construction Risk Assessment for the Shield-Driven Section of the Nanjing Weisan Road River-Crossing Project[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 49-54
[9] Zhang Boyang1, Zhao Xiaopeng1, Zhang Yaguo2, Chen Yu1.Risk Control for Saturated Hyperbaric Intervention in Slurry Shield Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 55-61
[10] Li Xinyu, Zhang Dingli, Fang Qian, Song Haoran.On Water Burst Patterns in Underwater Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(4): 24-31
[11] Zhang Han1,2, Li Yingming1,3, Ren Fangtao2, Yang Mingdong3.Elasto-Plastic Analysis of the Surrounding Rock of a Tunnel/Roadway Based on the Zienkiewicz-Pande Criterion[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 30-35
[12] Zhou Zelin, Chen Shougen, Li Yansong.Study of the Mechanical Characteristics of the Support Structure of a Deeply Buried Diversion Tunnel in Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 36-43
[13] Liu Qiang1, Tan Zhongsheng1, Chen Libao2, Zou Xiaoxin1.Field Tests Regaring the Uncertainty of the Calculation Model for Soil Filling Pressure on Open-Cut Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 128-134
[14] Li Yufeng1,2, Peng Limin1, Lei Mingfeng1,2.Dynamics Issues Regarding High-Speed Railway Crossing Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 8-15
[15] Jin Dalong, Li Xinggao.Model Test of the Relationship between the Face Support Pressure and Ground Surface Deformation of a Shield-Driven Tunnel in Sand Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2015,52(2): 44-51
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY