Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | ����
MODERN TUNNELLING TECHNOLOGY 2014, Vol. 51 Issue (3) :110-116    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Analysis of Local Damage Induced by Tunnelling in a Fractured Rock Mass Based on Noncontact Measurement Techniques
(College of Resources and Civil Engineering, Northeastern University, Shenyang 110819)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract  The rational determination of an Excavation Damage Zone (EDZ) in fractured rock plays an important role in selecting an excavation method and support pattern. A quantitative analysis was carried out for an EDZ range and its mechanical properties using an optimized numerical model based on the fine measurement and characterization of the structural plane of the rock onsite. Using the excavation of a tunnel on the Jianchang-Xingcheng expressway as an example, information regarding the structural plane at the working face was collected by noncontact measurement, imported into the GeoSMA-3D system, and used to produce a 3D model approximating the actual situation. Based on this, the PFC method was adopted to determine the EDZ range, and comparative analyses of the surrounding rock stress curve, displacement curve, force chain distribution, and fracture distribution were carried out. The results show that the force chain concentration represents the degree of disturbance to the surrounding rock, while the fracture density represents the degree of damage, and the fracture connectivity implies the failure zone, by which the EDZ and the mechanical properties of the fractured rock mass can be accurately identified. The local damage during rock failure can be well simulated by the PFC method.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
WANG Shu-Hong
ZAN Shi-Ming
WANG Cun-Gen
NI
YONG
Keywords�� Tunnelling   EDZ   Noncontact measurement   GeoSMA-3D   PFC     
Abstract�� The rational determination of an Excavation Damage Zone (EDZ) in fractured rock plays an important role in selecting an excavation method and support pattern. A quantitative analysis was carried out for an EDZ range and its mechanical properties using an optimized numerical model based on the fine measurement and characterization of the structural plane of the rock onsite. Using the excavation of a tunnel on the Jianchang-Xingcheng expressway as an example, information regarding the structural plane at the working face was collected by noncontact measurement, imported into the GeoSMA-3D system, and used to produce a 3D model approximating the actual situation. Based on this, the PFC method was adopted to determine the EDZ range, and comparative analyses of the surrounding rock stress curve, displacement curve, force chain distribution, and fracture distribution were carried out. The results show that the force chain concentration represents the degree of disturbance to the surrounding rock, while the fracture density represents the degree of damage, and the fracture connectivity implies the failure zone, by which the EDZ and the mechanical properties of the fractured rock mass can be accurately identified. The local damage during rock failure can be well simulated by the PFC method.
Keywords�� Tunnelling,   EDZ,   Noncontact measurement,   GeoSMA-3D,   PFC     
published: 2013-11-06
Cite this article:   
WANG Shu-Hong, ZAN Shi-Ming, WANG Cun-Gen etc .Analysis of Local Damage Induced by Tunnelling in a Fractured Rock Mass Based on Noncontact Measurement Techniques[J]  MODERN TUNNELLING TECHNOLOGY, 2014,V51(3): 110-116
URL:  
http://www.xdsdjs.com/EN/      ��     http://www.xdsdjs.com/EN/Y2014/V51/I3/110
��
No references of article
[1] CUI Guangyao1 SUN Lingyun2 ZUO Kuixian1 WANG Mingnian3 JING Hongfei4.Review of Researches on Mechanical Behaviors of Tunnel Fiber Reinforced Concrete Lining[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 1-7
[2] SUN Huixiang.On Failure Mechanism of Surrounding Rocks of the Deep-buried Underground Cavern Group under High Geostress and Its Countermeasures[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 8-17
[3] YUAN Xianfan1 LIAO Dan2.Research on Interpretation Method of TRT Test Results Based on GOCAD[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 18-24
[4] ZHANG Xiaolin1 CAI Jianhua2 LIAO Yankai2.Characteristics Analysis and Forecast Evaluation of Gas Occurrence of the Longquanshan Tunnel on Chengdu Metro[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 25-30
[5] PENG Bin1�� 2 ZHU Zhiheng2 YANG Junsheng2 FU Jinyang2 HE Hongbo1.On Digital Identification of Water Leakage at Tunnel Lining Based on the Panoramic Developed Image[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 31-37
[6] HUANG Yinding1��2.Study on the Planning Technology for Metro Built by Double Shield TBM in Old Urban Area[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 38-44
[7] ZHANG Jinwei1 LIU Zhiguang1 LU qingquan2 ZHANG zhiwei2.On Application and Promotion of BIM Technique in Urban Rail Transit Engineering[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 45-52
[8] XUE Gang ZHANG Xia.Economical and Ecological Evaluation Index System of the Urban Utility Tunnel Based on PSO-BP Neural Network[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 53-58
[9] WEN Xiaokai SUN Kun LIU Liang.Conception of IOT Technology Based Information System for Subway Patrol[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 59-64
[10] SUN Qiangqiang1 BO JingShan1, 2 LIU Hongshuai3 JING Liping2.Effects of a Tunnel on Ground Motion Amplification[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 65-71
[11] LI Jidong1,2 YOU Xinhua1.Seismic Response of the Metro Station with Pre-constructed Pipe-roof Integrating Support and Structure under Strong Earthquake Effect[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 72-78
[12] ZHUO Bin1 LI Sheng1 HE Chuan2 WANG Huan3 WANG Qicai1 MA Li4.Study on Mechanical Characteristics and Section Design of Trench Type Opencut Tunnel Lining Structure with Deep Covering Soil under Load Reduction[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 79-87
[13] CHEN Ming GUAN Huisheng XIE Youhui.Research on Pitch and Thrust Allocation of Shield Used in Inclined Shaft[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 88-94
[14] WANG Xueliang1 JI Xinbo2 XIA Mengran1 TAN Zhiming2 HOU Zhiqiang2 ZHANG Jihua2.Monitoring and Analysis of Pipe Jacking Force in the Shenyang Urban Stratum[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 95-101
[15] ZENG Lai1 LIU Yong2 YANG Hongyun2,3 GUO Ping4.Optimization of Loosing Circle Support of Stoping Roadway with Large Inclination[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(3): 102-108
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY