Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2014, Vol. 51 Issue (3) :7-14    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Construction Scheme of the West Qinling Extra-Long Tunnel on the Lanzhou-Chongqing Railway
(China Railway First Survey and Design Institute Group Ltd., Xi'an 710043)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract  The West Qinling extra-long tunnel, the longest TBM-driven tunnel in China's railway history, is a double-tube single-track tunnel being constructed using a combination of the drill and blast and TBM methods. Based on environmental and hydrogeological conditions, this paper analyzes: a construction scheme comparison; construction characteristics; the engineering adaptability of the TBM, the design of tunnel lining section and its support parameters; the synchronization of lining and TBM driving; and continuous conveyor belt mucking. It also introduces general information regarding the TBM equipment and tunnel construction.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LI Guo-Liang
SI Jian-Jun
Li-Ning
KeywordsRailway tunnel   Scheme comparison   TBM   Drill and blast method     
Abstract: The West Qinling extra-long tunnel, the longest TBM-driven tunnel in China's railway history, is a double-tube single-track tunnel being constructed using a combination of the drill and blast and TBM methods. Based on environmental and hydrogeological conditions, this paper analyzes: a construction scheme comparison; construction characteristics; the engineering adaptability of the TBM, the design of tunnel lining section and its support parameters; the synchronization of lining and TBM driving; and continuous conveyor belt mucking. It also introduces general information regarding the TBM equipment and tunnel construction.
KeywordsRailway tunnel,   Scheme comparison,   TBM,   Drill and blast method     
published: 2013-12-27
Cite this article:   
LI Guo-Liang, SI Jian-Jun, Li-Ning .Construction Scheme of the West Qinling Extra-Long Tunnel on the Lanzhou-Chongqing Railway [J]  MODERN TUNNELLING TECHNOLOGY, 2014,V51(3): 7-14
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2014/V51/I3/7
 
No references of article
[1] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[2] GENG Qi XIE Weifeng YANG Mulin WANG Xuebin HUANG Yufeng LI Lei LI Xiaobin LI Zhibiao.Development of a Scaled Multifunctional TBM Rock-breaking Test Platform[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 208-218
[3] WANG Lichuan1,2 YAN Guangtian1 YUAN Wei GAO Hongbing4 LI Liping2 ZHANG Chunyu1,5 WU Jian4 ZHANG Long3.Development and Application of TBM-mounted Omni-directional and Normal Deep Anchor Hole Drilling Machine[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 67-74
[4] ZHU Junlin1 ZHENG Mingming1, 2 PENG Linzhi ZHU Chengtao1 XIONG Liang1 ZHANG Yawei WU Zurui.Dynamic Response of Composite Support Structures Under Different Blasting Methods for TBM Breakout[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 117-125
[5] QIN Tiange 1, 2 WU Li CHEN Qian1 XIA Zhen1 LIU Shiya1, 2 CAI Xin1.Research Status and Development Trends of Intelligent Construction System for Drill and Blast Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 1-10
[6] LI Jiuyuan1 GAO Fayong1 MA Yongtao1 TANG Mingyang2 FU Kang3 LI Yuheng2 XUE Yiguo2.Study on Surrounding Rock Identification and Excavation Speed Prediction in TBM Tunnels Based on the Interaction Mechanism of Rock-Machine Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 75-87
[7] TANG Xie LIN Guojin1, 2 ZHANG Hang2.Adaptive Strategies for Mechanized Drill-and-Blast Construction in Highway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(3): 217-228
[8] JIA Lianhui1 ZHENG Wentao2 LU Yiqiang1 HE Fei1 SHANGGUAN Linjian2 ZHANG Yuxiang1.Force Analysis and Numerical Calculation Platform for Anti Back-sliding Device of TBM in Inclined Shafts[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 79-86
[9] ZHANG Guang1 GONG Qiuming1 XIE Xingfei1 PEI Chengyuan2 SHANG Ceng2.Interval Prediction of TBM Parameters in Stable Excavation Sections Based on Bootstrap-COA-BiGRU Model[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 121-131
[10] ZHANG Huan1, 2 ZHANG Shishu3 LI Tianbin1, 2 YANG Gang1, 2 LI Shisen1, 2 XIAO Huabo3 CHEN Weidong3.GAPSO-LightGBM-based Intelligent Prediction Method of Surrounding Rock Grade in TBM Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 98-109
[11] DONG Weijie1 ZHANG Siyang1 LI Bochang2 JIANG Yao1 CHEN Xu1 ZHENG Xiangle2 CHEN Sipan2 WU Di1.Study on TBM Jamming Problems in Jurassic and Cretaceous Argillaceous Sandstone Strata in Northern Xinjiang[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(2): 151-161
[12] LIU Shaoqiang1 XU Jianshu2 YANG Xiu2 TANG Qisheng1 XIE Xingfei1 GONG Qiuming1 ZHOU Xiaoxiong3.TBM Cutter Edge Tip Wear Phenomenon and Wear Evolution Characteristics[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(1): 20-27
[13] KUANG Liang1 SU Wei1 TAO Weiming1 TIAN Siming2 SHEN Yusheng3 LI Xu2 WANG Huiwu1.Study on the Impact Zoning and Fortification Range of Tunnel Structures Crossing Strike-slip Faults[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(6): 45-54
[14] WEI Ronghua1,2 ZHANG Kangjian1,2 ZHANG Zhiqiang1,2.Optimization Study of Waterproof and Drainage Technology Parameters for Deep-buried Ditches in Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 183-192
[15] SONG Yuepeng1 FAN Xiaofeng2 LIANG Yu2,3,4 PENG Hongguo5 ZHANG Hanwei5.Deformation Monitoring and Analysis during the Excavation of Deep Circular Shafts in Intercity Railway Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2024,61(5): 219-226
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY