Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2014, Vol. 51 Issue (5) :174-179    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Design for a Super-Shallow Large-Section Double-Level Tunnel in Complex Conditions Underneath Sensitive Buildings
(1 CCCC Second Highway Consultants Co. Ltd., Wuhan 430056; 2 Management Center of Zhuhai Connecting Line of Hong Kong-Zhuhai-Macao Bridge, Zhuhai 519030)
Download: PDF (0KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract  In light of the Gongbei tunnel in the Hong Kong-Zhuhai-Macao Bridge, which is a current world-class project in China, this paper introduces a new construction method: shallow mined excavation with a combination pipe roof and supporting structure system for the construction of a super-shallow large-section tunnel with six lanes and two levels underneath sensitive buildings in water-rich soft ground. In this method, the pipe-roof advance support and the supporting structure as the primary support are combined and connected to form an integrated circumferential and longitudinal load system with great stiffness, which can effectively control surface deformation during tunnel construction and operation and significantly reduce construction risks. Using this method, a waterproof curtain is formed by freezing soil between the pipes to avoid the surface deformation caused by loss of groundwater and the water- and mud-bursting that occurs during excavation, as well as to ensure excavation in a water-tight underground space. Pipe-jacking and ground freezing, which are rarely used in tunnel construction, have been combined reasonably with the supporting structure, successfully solving the technical problems of constructing a super-shallow large-section tunnel underneath sensitive buildings in complex geological and environmental conditions. A new concept and method for tunnel construction has been developed.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LIU Ji-Guo-1
CHENG Yong-1
GUO Xiao-Hong-1
Wang-Wen-Zhou-2
Keywords Water-rich soft ground   Super-shallow tunnel with two levels   Combined system of pipe roofing and supporting structure   Shallow mined method     
Abstract: In light of the Gongbei tunnel in the Hong Kong-Zhuhai-Macao Bridge, which is a current world-class project in China, this paper introduces a new construction method: shallow mined excavation with a combination pipe roof and supporting structure system for the construction of a super-shallow large-section tunnel with six lanes and two levels underneath sensitive buildings in water-rich soft ground. In this method, the pipe-roof advance support and the supporting structure as the primary support are combined and connected to form an integrated circumferential and longitudinal load system with great stiffness, which can effectively control surface deformation during tunnel construction and operation and significantly reduce construction risks. Using this method, a waterproof curtain is formed by freezing soil between the pipes to avoid the surface deformation caused by loss of groundwater and the water- and mud-bursting that occurs during excavation, as well as to ensure excavation in a water-tight underground space. Pipe-jacking and ground freezing, which are rarely used in tunnel construction, have been combined reasonably with the supporting structure, successfully solving the technical problems of constructing a super-shallow large-section tunnel underneath sensitive buildings in complex geological and environmental conditions. A new concept and method for tunnel construction has been developed.
Keywords Water-rich soft ground,   Super-shallow tunnel with two levels,   Combined system of pipe roofing and supporting structure,   Shallow mined method     
published: 2014-08-13
Cite this article:   
LIU Ji-Guo-1, CHENG Yong-1, GUO Xiao-Hong-1 etc .Design for a Super-Shallow Large-Section Double-Level Tunnel in Complex Conditions Underneath Sensitive Buildings[J]  MODERN TUNNELLING TECHNOLOGY, 2014,V51(5): 174-179
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2014/V51/I5/174
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY