Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2016, Vol. 53 Issue (2) :9-16    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Key Construction Techniques for Urban Underwater Bored Tunnels
1 China Railway Tunnel Group Co. Ltd., Luoyang 471000; 2 School of Civil Engineering, Central South University, Changsha 410075)
Download: PDF (4820KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Considering that underwater tunnels are important river-crossing passages in urban areas at present, and using the construction of the Yingpan road tunnel in Changsha city as an example, some innovative design and construction methods are discussed for urban underwater bored tunnels. A method for determining minimum overburden is put forward based on the consideration of engineering control measures and analysis of the problems with existing methods, by which the minimum overburden is determined to be 11.5 m (more than 5 meters shallower than under existing methods in China and abroad) and the tunnel length is reduced by nearly 400 m accordingly. The water seepage during tunnel operation could be reduced by adopting a “blocking-based limited drainage” principle and adjusting grouting-ring thickness and relevant reinforcement parameters. A shallow-buried large-section underwater tunnel with a depth/span ratio of 0.46 and excavation area of 376 m2 is completed successfully using advance full-face pre-reinforcement, a double-layer primary support, a reasonable excavation section division, and proper construction arrangements.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
Keywords Underwater tunnel   Interchange   Minimum overburden   Construction technique     
Abstract: Considering that underwater tunnels are important river-crossing passages in urban areas at present, and using the construction of the Yingpan road tunnel in Changsha city as an example, some innovative design and construction methods are discussed for urban underwater bored tunnels. A method for determining minimum overburden is put forward based on the consideration of engineering control measures and analysis of the problems with existing methods, by which the minimum overburden is determined to be 11.5 m (more than 5 meters shallower than under existing methods in China and abroad) and the tunnel length is reduced by nearly 400 m accordingly. The water seepage during tunnel operation could be reduced by adopting a “blocking-based limited drainage” principle and adjusting grouting-ring thickness and relevant reinforcement parameters. A shallow-buried large-section underwater tunnel with a depth/span ratio of 0.46 and excavation area of 376 m2 is completed successfully using advance full-face pre-reinforcement, a double-layer primary support, a reasonable excavation section division, and proper construction arrangements.
Keywords Underwater tunnel,   Interchange,   Minimum overburden,   Construction technique     
Cite this article:   
.Key Construction Techniques for Urban Underwater Bored Tunnels[J]  MODERN TUNNELLING TECHNOLOGY, 2016,V53(2): 9-16
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2016/V53/I2/9
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY