Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2016, Vol. 53 Issue (6) :115-122    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Model Optimization and Computational Analysis of a Ventilation Network for Large Underground Petroleum Storage Caverns
(Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031)
Download: PDF (2248KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Usually it is necessary to use forced ventilation or a large number of ventilation shafts to solve construc? tion phase ventilation problems in large scale underground caverns. Since ventilation shafts are mostly set up in accordance with experience or site conditions, they are generally located at a relatively shallow depth in an oil storage cavern, resulting in a“disordered”ventilation network, leading to poor local ventilation. Shaft depth and the temperature difference between inside and outside have a great effect on the natural ventilation of the shaft. Taking the construction ventilation of the Jinzhou underground petroleum storage cavern as an example, this paper introduces a calculation method for gallery ventilation based on ventilation network theory in order to study the ventilation calculation and equipment configuration for three ventilation configurations in a cavern group. The results show that using the entrance of the construction adits (construction transport channels from the ground into the cavern) as a viable air outlet and forcing in fresh air with an axial flow fan at the shaft mouth results in an orderly circulation in the ventilation network. Using a shaft to exhaust air requires more than one fan operating at the same time, which means higher costs and, additionally, the natural ventilation effect of shafts is not sufficient in winter. When the shaft is connected to the cavern (i.e., the upper layer of the petroleum storage cavern is completed), it is possible to adopt forced ventilation supplemented by jet flow, or it may be necessary to use full jet flow if the ventilation distance is long.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
ZHANG Heng- Lin- Fang- Sun-Jian-Chun
KeywordsCavern group   Construction ventilation   Ventilation network   Computational analysis   Ventilation moni? toring     
Abstract: Usually it is necessary to use forced ventilation or a large number of ventilation shafts to solve construc? tion phase ventilation problems in large scale underground caverns. Since ventilation shafts are mostly set up in accordance with experience or site conditions, they are generally located at a relatively shallow depth in an oil storage cavern, resulting in a“disordered”ventilation network, leading to poor local ventilation. Shaft depth and the temperature difference between inside and outside have a great effect on the natural ventilation of the shaft. Taking the construction ventilation of the Jinzhou underground petroleum storage cavern as an example, this paper introduces a calculation method for gallery ventilation based on ventilation network theory in order to study the ventilation calculation and equipment configuration for three ventilation configurations in a cavern group. The results show that using the entrance of the construction adits (construction transport channels from the ground into the cavern) as a viable air outlet and forcing in fresh air with an axial flow fan at the shaft mouth results in an orderly circulation in the ventilation network. Using a shaft to exhaust air requires more than one fan operating at the same time, which means higher costs and, additionally, the natural ventilation effect of shafts is not sufficient in winter. When the shaft is connected to the cavern (i.e., the upper layer of the petroleum storage cavern is completed), it is possible to adopt forced ventilation supplemented by jet flow, or it may be necessary to use full jet flow if the ventilation distance is long.
KeywordsCavern group,   Construction ventilation,   Ventilation network,   Computational analysis,   Ventilation moni? toring     
Cite this article:   
ZHANG Heng- Lin- Fang- Sun-Jian-Chun .Model Optimization and Computational Analysis of a Ventilation Network for Large Underground Petroleum Storage Caverns[J]  MODERN TUNNELLING TECHNOLOGY, 2016,V53(6): 115-122
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2016/V53/I6/115
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY