Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2017, Vol. 54 Issue (1) :89-95    DOI:
Article Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Influence of Local Water Leakage of Shield Tunnels on the Pore Water Pressure of Soil Masses
(Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500)
Download: PDF (2095KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Based on conformal mapping of the complex variable function, the semi-infinite plane of a tunnel was transformed into a concentric ring region. With the soil around the tunnel regarded as a homogeneous, continuous,isotropic, saturated medium, the boundary collocation method was applied to control the local leakage of shield tunnels. The analytic method and numerical method were combined to solve the basic differential equation of the twodimensional seepage of saturated soil masses under steady seepage, and a semi-numerical and semi-analytical solution of pore water pressure variations due to local water leakage of shield tunnels is obtained. The effects of the water leakage range, location, and total water head difference between the ground surface and the tunnel leakage boundary on the pore water pressure of the soil mass around the tunnel are discussed through this calculation method. The results show that there are great changes to the pore water pressure under a one time central buried depth of a tunnel in the horizontal direction when lateral water leakage occurs, and the larger the leakage range, the more significant the decay rate of the pore water pressure; the larger the total water head difference between the ground sur? face and tunnel leakage boundary, the more obvious the influence is on the pore water pressure of the soil mass, and it is proportional to the total water head difference and volume of the pore water pressure reduction; and the lateral leakage volume of tunnels increases with an increase of the total water head difference, being characterized by a linear relationship.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
WANG Zhi-Liang- Shen-Lin-Fang- Wu- Zeng
KeywordsShield tunnel   Leakage   Pore water pressure   Conformal mapping   Boundary collocation method   Seminumerical and semi-analytical solution     
Abstract: Based on conformal mapping of the complex variable function, the semi-infinite plane of a tunnel was transformed into a concentric ring region. With the soil around the tunnel regarded as a homogeneous, continuous,isotropic, saturated medium, the boundary collocation method was applied to control the local leakage of shield tunnels. The analytic method and numerical method were combined to solve the basic differential equation of the twodimensional seepage of saturated soil masses under steady seepage, and a semi-numerical and semi-analytical solution of pore water pressure variations due to local water leakage of shield tunnels is obtained. The effects of the water leakage range, location, and total water head difference between the ground surface and the tunnel leakage boundary on the pore water pressure of the soil mass around the tunnel are discussed through this calculation method. The results show that there are great changes to the pore water pressure under a one time central buried depth of a tunnel in the horizontal direction when lateral water leakage occurs, and the larger the leakage range, the more significant the decay rate of the pore water pressure; the larger the total water head difference between the ground sur? face and tunnel leakage boundary, the more obvious the influence is on the pore water pressure of the soil mass, and it is proportional to the total water head difference and volume of the pore water pressure reduction; and the lateral leakage volume of tunnels increases with an increase of the total water head difference, being characterized by a linear relationship.
KeywordsShield tunnel,   Leakage,   Pore water pressure,   Conformal mapping,   Boundary collocation method,   Seminumerical and semi-analytical solution     
Cite this article:   
WANG Zhi-Liang- Shen-Lin-Fang- Wu- Zeng .Influence of Local Water Leakage of Shield Tunnels on the Pore Water Pressure of Soil Masses[J]  MODERN TUNNELLING TECHNOLOGY, 2017,V54(1): 89-95
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2017/V54/I1/89
 
No references of article
[1] LIU Feixiang1,2.SCDZ133 Intelligent Multi-function Trolley and Its Application in Tunnelling[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 1-7
[2] ZHOU Wenbo WU Huiming ZHAO Jun.On Driving Strategy of the Shield Machine with Atmospheric Cutterhead in Mudstone Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 8-15
[3] CHEN Zhuoli1,2 ZHU Xunguo1,2 ZHAO Deshen1,2 WANG Yunping1,2.Research on Anchorage Mechanism of Yielding Support in the Deep-buried Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 16-22
[4] WANG Quansheng.Case Study Based Analysis of Segment Division Principles of Rectangular Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 23-29
[5] ZHANG Heng1 ZHU Yimo1 LIN Fang1 CHEN Shougen1 YANG Jiasong2.Study on Optimum Excavation Height of Middle Bench in an Underground Cavern Based on Q System Design[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 30-37
[6] LI Hao.Geological Survey on Breakthrough Section of the Large-section Karst Tunnel by Radio Wave Penetration Method[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 38-42
[7] CEN Peishan1 TIAN Kunyun2 WANG Ximin3.Study on Gas Hazard Assessment of Yangshan Tunnel on Inner MongoliaJiangxi Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 43-49
[8] ZHU Jianfeng1 GONG Quanmei2.Centrifugal Model Test on Long-term Settlement of Shield Tunnels in Soft Soils[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 49-55
[9] CHEN Youzhou1 REN Tao2 DENG Peng2 WANG Bin3.Prediction of Tunnel Settlements by Optimized Wavelet Neural Network Based on ABC[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 56-61
[10] WANG Dengmao TENG Zhennan TIAN Zhiyu CHEN Zhixue.Reflection on Disease Treatment and Design Issues of Unconventional Rockburst of Bamiao Tunnel on Taoyuan-Bazhong Highway[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 62-68
[11] WU Shuyuan1 CHENG Yong1 XIE Quanmin2 LIU Jiguo1 CHEN Biguang1.Analysis on the Causes of the Large Deformation of Surrounding Rocks of Milashan Tunnel in Tibet[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 69-73
[12] WANG Sui1,2,3 ZHONG Zuliang3 LIU Xinrong3 WU Bo1,2,4 ZHAO Yongbo1,2 LI Zhantao1,2.D-P Yield Criterion Based Elastoplastic Solution of the Circular Pressure Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 74-80
[13] LI Ming YAN Songhong PAN Chunyang ZHANG Xubin.Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 81-88
[14] ZHANG Kai1 CHEN Shougen2 HUO Xiaolong3 TAN Xinrong4.Extension Assessment Model for the Risk of Water Inflow in Karst Tunnels and Its Application[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 89-96
[15] LI Jie1 ZHANG Bin1 FU Ke1 MA Chao1 GUO Jingbo1 NIU Decao2.Site Data Based Prediction of Shield Driving Performance in Compound Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2019,56(4): 97-104
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY