Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2019, Vol. 56 Issue (4) :81-88    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel
(Lanzhou Jiaotong University, Lanzhou 730070)
Download: PDF (4167KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract The water content of loess layer of the tunnel body with a large section in the rear distribution area of Donggang station of Lanzhou rail transit line 1 is about 28.5% and the saturation is over 95%, which induces large settlement of primary support and long time to get stable for the surrounding rock. Based on the data of laboratory geotechnical test, a three-dimensional finite element model was established, the mechanical and deformation charac?teristics of primary support, ground surface settlement and pore water pressure distribution during construction by CRD method and double side drift method were compared and analyzed based on fluid-solid coupling and uncoupling effects. The results show that the ground surface settlement, vertical and horizontal displacements and their increase rates of primary support considering the effect of fluid-solid coupling are larger than that without considering the effect of fluid-solid coupling, there is no significant decrease in the later period and they are closer to the measured values at site, while there is no big change of mechanical behavior; it is more favorable to adopt the construction method of CRD with six excavation sections to control ground surface settlement and tunnel deformation based on fluid-solid coupling effect and the force applied on primary support are approximate under the two construction methods but the distribution forms is different; under the effect of fluid-solid coupling, the places with large hydraulic gradient of groundwater are mainly located at tunnel sidewall and invert, which is prone to leakage during construction, and compaction of shotcrete at crown and backfill grouting should be carried out to prevent the seepage field from shifting.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
LI Ming YAN Songhong PAN Chunyang ZHANG Xubin
KeywordsWater-rich loess   Large-section tunnel   Fluid-solid coupling   CRD method   Double side drift method   Numerical analysis     
Abstract: The water content of loess layer of the tunnel body with a large section in the rear distribution area of Donggang station of Lanzhou rail transit line 1 is about 28.5% and the saturation is over 95%, which induces large settlement of primary support and long time to get stable for the surrounding rock. Based on the data of laboratory geotechnical test, a three-dimensional finite element model was established, the mechanical and deformation charac?teristics of primary support, ground surface settlement and pore water pressure distribution during construction by CRD method and double side drift method were compared and analyzed based on fluid-solid coupling and uncoupling effects. The results show that the ground surface settlement, vertical and horizontal displacements and their increase rates of primary support considering the effect of fluid-solid coupling are larger than that without considering the effect of fluid-solid coupling, there is no significant decrease in the later period and they are closer to the measured values at site, while there is no big change of mechanical behavior; it is more favorable to adopt the construction method of CRD with six excavation sections to control ground surface settlement and tunnel deformation based on fluid-solid coupling effect and the force applied on primary support are approximate under the two construction methods but the distribution forms is different; under the effect of fluid-solid coupling, the places with large hydraulic gradient of groundwater are mainly located at tunnel sidewall and invert, which is prone to leakage during construction, and compaction of shotcrete at crown and backfill grouting should be carried out to prevent the seepage field from shifting.
KeywordsWater-rich loess,   Large-section tunnel,   Fluid-solid coupling,   CRD method,   Double side drift method,   Numerical analysis     
Cite this article:   
LI Ming YAN Songhong PAN Chunyang ZHANG Xubin .Analysis of Fluid-Solid Coupling Effect during Excavation of the Water-rich Large-section Loess Tunnel[J]  MODERN TUNNELLING TECHNOLOGY, 2019,V56(4): 81-88
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2019/V56/I4/81
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY