Home | About Journal  | Editorial Board  | Instruction | Subscription | Advertisement | Message Board  | Contact Us | 中文
MODERN TUNNELLING TECHNOLOGY 2019, Vol. 56 Issue (5) :187-194    DOI:
Current Issue | Next Issue | Archive | Adv Search << [an error occurred while processing this directive] | [an error occurred while processing this directive] >>
Characteristics of Roof Caving and Rock Falling of the Dege Tunnel and Corresponding Treatment Measures
(1 Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031;2 Civil Engineering School, Southwest Jiaotong University, Chengdu 610031; 3 Sichuan Expressway Construction & Development Group Co., Ltd., Chengdu 615000)
Download: PDF (3457KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract Roof caving and rock falling occurred during the construction of Dege tunnel on the Sichuan-Tibet high? way. The characteristics of displacement and stress of surrounding rock and support were studied by numerical simulation and site test, a thorough analysis was carried out regarding the features and mechanism of roof caving and rock falling occurred at the same tunnel, and some corresponding treatment measures were proposed. The research results show that roof caving was represented by debris flow and rock falling was represented by cracked deformation; plastic zone of crushed stone occurs at tunnel crown in the course of roof caving and dilatancy occurs due to the difference of vertical stress and horizontal stress in the course of rock falling; roof caving is caused by construction disturbance due to poor self-stability of shallow-buried crushed rock mass and rock falling is induced by dead load of rock mass and blasting construction attributed to developed fissure of deep-buried sericite quartz schist. The main corresponding measures include restriction of plastic deformation and cracking development, installation of anchoring and injection support system, implementation of forced composite support and strengthening of the support parameters.
Service
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
RSS
Articles by authors
YAN Jian1
2 HE Chuan1 LU Daiyue1 LEI Deming2
KeywordsSichuan-Tibet highway   Tunnel engineering;Roof caving   Rock falling   Numerical simulation   Field test;Failure characteristics   Treatment measures     
Abstract: Roof caving and rock falling occurred during the construction of Dege tunnel on the Sichuan-Tibet high? way. The characteristics of displacement and stress of surrounding rock and support were studied by numerical simulation and site test, a thorough analysis was carried out regarding the features and mechanism of roof caving and rock falling occurred at the same tunnel, and some corresponding treatment measures were proposed. The research results show that roof caving was represented by debris flow and rock falling was represented by cracked deformation; plastic zone of crushed stone occurs at tunnel crown in the course of roof caving and dilatancy occurs due to the difference of vertical stress and horizontal stress in the course of rock falling; roof caving is caused by construction disturbance due to poor self-stability of shallow-buried crushed rock mass and rock falling is induced by dead load of rock mass and blasting construction attributed to developed fissure of deep-buried sericite quartz schist. The main corresponding measures include restriction of plastic deformation and cracking development, installation of anchoring and injection support system, implementation of forced composite support and strengthening of the support parameters.
KeywordsSichuan-Tibet highway,   Tunnel engineering;Roof caving,   Rock falling,   Numerical simulation,   Field test;Failure characteristics,   Treatment measures     
Cite this article:   
YAN Jian1, 2 HE Chuan1 LU Daiyue1 LEI Deming2 .Characteristics of Roof Caving and Rock Falling of the Dege Tunnel and Corresponding Treatment Measures[J]  MODERN TUNNELLING TECHNOLOGY, 2019,V56(5): 187-194
URL:  
http://www.xdsdjs.com/EN/      或     http://www.xdsdjs.com/EN/Y2019/V56/I5/187
 
No references of article
[1] LI Ruijun1 SONG Zongying2 LI Chen1 WANG Wenbin2 REN Yuzhen3,4 CAI Jianhua3,4 ZHANG Jiaxu3,4.Multi-source Data Fusion-based Diagnosis and Treatment Strategies for Tructural Defects in Liangjiashan Tunnel on Heavy-haul Railway[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 301-308
[2] ZHANG Xiaolong.Mechanical Response Analysis of Subway Shield Tunnel Structure under Pile Foundation Load[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 82-89
[3] LI Kexi1,2 DANG Jiandong3 ZHANG Jian3 YE Guangxiang4 WANG Xiaojun1,2 CHEN Qinglin1,2.Study on Fracture Characteristics of Different Types of Sandstone Based on Acoustic Emission Characteristic Parameters[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 26-36
[4] ZHOU Cairong1 YI Liming1 MA Shanqing2 ZHOU Li3 YU Jinhong4, 5.Load-bearing Behavior and Reinforcement Schemes of High-performance Fiber-reinforced Concrete Jacking Pipes under Three-point Loading[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 50-60
[5] GUO Yongjun1 LI Chao2 ZHENG Jianguo3 YU Yongtang4 ZHU Caihui5.Influence of Ground Surcharge on Existing Shield Tunnel Segments in Xi′an Loess Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 61-72
[6] WANG Yonggang1 CUI Yikun1 WU Jiuqi2, 3 HUANG Jun4 SHEN Xiang2, 3 YANG Kui4 SU Dong2, 3.Comparative Analysis of Disc Cutter Forces and Wear under Different Wear Modes[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 73-81
[7] FENG Jimeng1,2 SONG Jiadai1,2 WANG Shengtao3 LI Yifei1,2 ZHANG Junru1,2 WANG Haoming4 WANG Bo1,2.Study on the Deformation Control Effectiveness of Extra-long Pipe Roofs in Large-section Tunnels in Reclamation Strata[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 155-162
[8] XU Caijian1 CHEN Xingyu1 LEI Minglin1 ZHANG Xinglong2 SUN Huaiyuan2 LI Xiaojun2.Digital Twin and Risk Decision-making for Water-richess of Surrounding Rock Ahead of Tunnel Face[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 90-99
[9] YANG Ying1 NI Kai1 GE Lin2 ZHANG Mingfei3 WANG Xiaorui4.Improved UNet Model-based Image Segmentation for Tunnel Seepage Defects under Low-light Conditions[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 100-110
[10] SU Kaichun1 FU Rui2,3 ZENG Hongrui2,3 LENG Xiqiao4 GUO Chun2,3.Short-term Multi-step Traffic Volume Prediction for Highway Tunnels Based on DBO-A-LSTM[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 111-121
[11] XIONG Ying1,2 ZHANG Junru1,2 FAN Ziyan1,2 CHEN Jiahao1,2 MA Jianchi1,2 CHEN Pengtao1,2.Propagation and Attenuation Characteristics of Blast-induced Stress Waves in Layered Soft Rock[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 122-131
[12] LIU Yang1 SHAO Zekai2 TIAN Haofan2 ZHANG Ruxi1 ZHENG Bo3 WANG Zhengzheng2.Damage Mechanisms of Coal Pillars Induced by Blasting Construction in Highway Tunnels Underlying Room-and-Pillar Mine Goafs[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 132-144
[13] LUO Zhiyang1 ZHANG Chunyu2,3 WANG Lichuan1,2,4,5 XU Shuo1 LI Liping4 WANG Qianqian5 LIU Zhiqiang6.Research on Water Inrush Mechanisms and Grouting Sealing Techniques for TBM Tunnels in Fractured Rock Masses[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 145-154
[14] ZHOU Yili1 FENG Kun1 GUO Wenqi1 ZHANG Liangliang2 LI Chunlin3.Study on the Bending Behavior and Damage Characteristics of Longitudinal Segment Joints in Super-large Diameter Shield Tunnels[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 163-173
[15] YI Dan1 XUE Haoyun2 YANG Shaoyi2 YU Bo1 FENG Kun2 LIN Gang1.Analysis of the Influence of Bolt Failure of Shield Tunnel Segment Structure on Transverse Seismic Response[J]. MODERN TUNNELLING TECHNOLOGY, 2025,62(4): 174-181
Copyright 2010 by MODERN TUNNELLING TECHNOLOGY